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Abstract

This chapter contains topics which do not fit naturally under any umbrella, but which I
feel might be of some relevance. Basically TGD inspired comments to the work of the people
not terribly relevant to quantum TGD itself are in question.

For few years ago Witten’s approach to 3-D quantum gravitation raised a considerable
interest and this inspired the comparison of this approach with quantum TGD in which light-
like 3-surfaces are in a key role. Few years later the entropic gravity of Verlinde stimulated a
lot of fuss in blogs and it is interesting to point out how the formal thermodynamical structure
(or actually its “square root”) emerges in the fundamental formulation of TGD.

Few years later the entropic gravity of Verlinde stimulated a lot of fuss in blogs and it is
interesting to point out how the formal thermodynamical structure (or actually its “square
root”) emerges in the fundamental formulation of TGD.

Is TGD consistent with Einstein’s equations and in what sense, has been the key question
for decades. Now the situation is settled and one can understand how the GRT space-time
emerges from TGD space-time as an approximate notion replacing many-sheeted space-time as
4-surface with Minkowski metric replaced with an effective metric, which sums up the contri-
butions of various space-time sheets to the deformation from M4 metric. This approximation
fails in very early cosmology where string like objects dominate. This interpretation does not
exclude the possibility that also preferred extremals might in some sense satisfy Einstein’s
equations although this is by no means necessary. One of the attempts based on what now
seems to be wrong view about GRT-TGD relationship led to the idea that sub-manifold geom-
etry allow to generalized the notion of cosmological constants so that there would be several
of them. Although the idea looks now obsolete, I decided to keep it as a kind of curiosity.
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Few years later the entropic gravity of Verlinde stimulated a lot of fuss in blogs and it is
interesting to point out how the formal thermodynamical structure (or actually its “square root”)
emerges in the fundamental formulation of TGD.

Is TGD consistent with Einstein’s equations and in what sense, has been the key question for
decades. Now the situation is settled and one can understand how the GRT space-time emerges
from TGD space-time as an approximate notion replacing many-sheeted space-time as 4-surface
with Minkowski metric replaced with an effective metric, which sums up the contributions of
various space-time sheets to the deformation from M4 metric. This approximation fails in very
early cosmology where string like objects dominate. This interpretation does not exclude the
possibility that also preferred extremals might in some sense satisfy Einstein’s equations although
this is by no means necessary. One of the attempts based on what now seems to be wrong view
about GRT-TGD relationship led to the idea that sub-manifold geometry allow to generalized the
notion of cosmological constants so that there would be several of them. Although the idea looks
now obsolete, I decided to keep it as a kind of curiosity.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [?].

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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2 Light-Like 3-Surfaces As Vacuum Solutions Of 3-D Vac-
uum Einstein Equations And Witten’s Approach To Quan-
tum Gravitation

There is an interesting relationship to the recent yet unpublished work of Witten related to 3-D
quantum blackholes [?], which allows to get additional perspective.

1. The motivation of Witten is to find an exact quantum theory for blackholes in 3-D case. Wit-
ten proposes that the quantum theory for 3-D AdS3 blackhole with a negative cosmological
constant can be reduced by AdS3/CFT2 correspondence to a 2-D conformal field theory at
the 2-D boundary of AdS3 analogous to blackhole horizon. This conformal field theory would
be a Chern-Simons theory associated with the isometry group SO(1, 2)× SO(1, 2) of AdS3.
Witten restricts the consideration to Λ < 0 solutions because Λ = 0 does not allow black-hole
solutions and Witten believes that Λ > 0 solutions are non-perturbatively unstable.

2. This conformal theory would have the so called monster group [?, ?] as the group of its
discrete hidden symmetries. The primary fields of the corresponding conformal field theory
would form representations of this group. The existence of this kind of conformal theory
has been demonstrated already [?]. In particular, it has been shown that this theory does
not allow massless states. On the other hand, for the 3-D vacuum Einstein equations the
vanishing of the Einstein tensor requires the vanishing of curvature tensor, which means that
gravitational radiation is not possible. Hence AdS3 theory in Witten’s sense might define
this conformal field theory.

2.1 Similarities With TGD

Witten’s construction has obviously a strong structural similarity to TGD.

1. Chern-Simons action for the induced Kähler form - or equivalently, for the induced classical
color gauge field proportional to Kähler form and having Abelian holonomy - corresponds
to the Chern-Simons action in Witten’s theory. Note however that in the recent formulation
of Quantum TGD Kähler action and corresponding instanton density J ∧ J define real and
imaginary parts of complexified Kähler action. The imaginary part of the complexified
Kähler function does not contribute to the WCW metric but gives first principle description
of anyons and purely topological degrees of freedom.

2. Light-like 3-surfaces can be regard as 3-D solutions of vacuum Einstein equations. Due to
the effective 2-dimensionality of the induced metric Einstein tensor vanishes identically and
vacuum Einstein equations are satisfied for Λ = 0. One can say that light-like partonic
3-surfaces correspond to empty space solutions of Einstein equations. Even more, partonic
3-surfaces are very much analogous to 3-D black-holes if one identifies the counterpart of
black-hole horizon with the intersection of δM4

± × CP2 with the partonic 2-surface.

3. For light-like 3-surfaces curvature tensor is non-vanishing which raises the question whether
one obtains gravitons in this case. The fact that time direction does not contribute to the
metric means that propagating waves are not possible so that no 3-D gravitational radiation is
obtained. There is analog for this result at quantum level. If partonic fermions are assumed
to be free fields as is done in the recent formulation of quantum TGD, gravitons can be
obtained only as parton-antiparton bound states connected by flux tubes and are therefore
genuinely stringy objects. Hence it is not possible to speak about 3-D gravitons as single
parton states.

4. Vacuum Einstein equations can be regarded as gauge fixing allowing to eliminate partially
the gauge degeneracy due to the general coordinate invariance. Additional super conformal
symmetries are however present and have an identification in terms of additional symmetries
related to the fact that space-time surfaces correspond to preferred extremals of Kähler action
whose existence was concluded before the discovery of the formulation in terms of light-like
3-surfaces.
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2.2 Differences From TGD

There are also interesting differences.

1. According to Witten, his theory has no obvious generalization to 4-D black-holes whereas
3-D light-like determinants define the generalization of blackhole horizons which are also
light-like 3-surfaces in the induced metric. In particular, light-like 3-surfaces define a 4-D
quantum holography.

2. Partonic 3-surfaces are dynamical unlike AdS3 and the analog of Witten’s theory results by
freezing the vibrational degrees of freedom in TGD framework.

3. The very notion of light-likeness involves the induced metric implying that the theory is
almost-topological but not quite. This small but important distinction indeed guarantees
that the theory is physically interesting.

4. In Witten’s theory the gauge group corresponds to the isometry group SO(1, 2) × SO(1, 2)
of AdS3. The group of isometries of light-like 3-surface is something much much mightier.
It corresponds to the conformal transformations of 2-dimensional section of the 3-surfaces
made local with respect to the radial light-like coordinate in such a manner that radial scaling
compensates the conformal scaling of the metric produced by the conformal transformation.

The direct TGD counterpart of the Witten’s gauge group would be thus infinite-dimensional
and essentially same as the group of 2-D conformal transformations. Presumably this can
be interpreted in terms of the extension of conformal invariance implied by the presence
of ordinary conformal symmetries associated with 2-D cross section plus “conformal” sym-
metries with respect to the radial light-like coordinate. This raises the question about the
possibility to formulate quantum TGD as something analogous to string field theory using
using Chern-Simons action for this infinite-dimensional group.

5. Monster group does not have any special role in TGD framework. However, all finite groups
and - as it seems - also compact groups can appear as groups of dynamical symmetries at the
partonic level in the general framework provided by the inclusions of hyper-finite factors of
type II1 [K3, K4]. Compact groups and their quantum counterparts would closely relate to a
hierarchy of Jones inclusions associated with the TGD based quantum measurement theory
with finite measurement resolution defined by inclusion as well as to the generalization of the
embedding space related to the hierarchy of Planck constants [K4]. Discrete groups would
correspond to the number theoretical braids providing representations of Galois groups for
extensions of rationals realized as braidings [K5].

6. To make it clear, I am not suggesting that AdS3/CFT2 correspondence should have a TGD
counterpart. If it had, a reduction of TGD to a closed string theory would take place.
The almost-topological QFT character of TGD excludes this on general grounds. More con-
cretely, the dynamics would be effectively 2-dimensional if the radial superconformal algebras
associated with the light-like coordinate would act as pure gauge symmetries. Concrete man-
ifestations of the genuine 3-D character are following.

(a) Generalized super-conformal representations decompose into infinite direct sums of
stringy super-conformal representations.

(b) In p-adic thermodynamics explaining successfully particle massivation radial conformal
symmetries act as dynamical symmetries crucial for the particle massivation interpreted
as a generation of a thermal conformal weight.

(c) The maxima of Kähler function defining Kähler geometry in the world of classical worlds
correspond to special light-like 3-surfaces analogous to bottoms of valleys in spin glass
energy landscape meaning that there is infinite number of different 3-D light-like surfaces
associated with given 2-D partonic configuration each giving rise to different background
affecting the dynamics in quantum fluctuating degrees of freedom. This is the analogy
of landscape in TGD framework but with a direct physical interpretation in say living
matter.
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As noticed, Witten’s theory is essentially for 2-D fundamental objects. It is good to sum up what
is needed to get a theory for 3-D fundamental objects in TGD framework from an approach similar
to Witten’s in many respects. This connection is obtained if one brings in 4-D holography, replaces
3-metrics with light-like 3-surfaces (light-likeness constraint is possible by 4-D general coordinate
invariance), and accepts the new view about S-matrix implied by the zero energy ontology [K3].

1. Light-like 3-surfaces can be regarded as solutions vacuum Einstein equations with vanishing
cosmological constant (Witten considers solutions with non-vanishing cosmological constant).
The effective 2-D character of the induced metric is what makes this possible.

2. Zero energy ontology is also an essential element: quantum states of 3-D theory in zero energy
ontology correspond to generalized S-matrices [K3]: Matrix or M-matrix might be a proper
term. Matrix is a “complex square root” of density matrix -matrix valued generalization of
Schrödinger amplitude - defining time like entanglement coefficients. Its “phase” is unitary
matrix and might be rather universal. Matrix is a functor from the category of Feyman
cobordisms and matrices have groupoid like structure [K3]. Without this generalization
theory would reduce to a theory for 2-D fundamental objects.

3. Theory becomes genuinely 4-D because S-matrix is not universal anymore but characterizes
zero energy states.

4. 4-D holography is obtained via the Kähler metric of the world of classical worlds assigning
to light-like 3-surface a preferred extremal of Kähler action as the analog of Bohr orbit con-
taining 3-D light-like surfaces as sub-manifolds (analogs of black hole horizons and light-like
boundaries). Interiors of 4-D space-time sheets corresponds to zero modes of the metric
and to the classical variables of quantum measurement theory (quantum classical correspon-
dence). The conjecture is that Dirac determinant for the Kähler-Dirac action associated
with partonic 3-surfaces defines the vacuum functional as the exponent of Kähler function
with Kähler coupling strength fixed completely as the analog of critical temperature so that
everything reduces to almost topological QFT [K10].

5. The counterpart of the ordinary unitary S-matrix in mathematical sense is between zero en-
ergy states. I call it U-matrix [K3, K6]. It is quite possible and also natural that M -matrices
would serve as building blocks of U -matrix so that also U -matrix would be experimentally
measurable. This expectation seems to be true as the explicit construction of U-matrices
demonstrates [K6]. It is crucial for understanding consciousness via moment of conscious-
ness as quantum jump identification.

3 Entropic Gravity And TGD

Eric Verlinde has posted an interesting eprint titled On the Origin of Gravity and the Laws of
Newton to arXiv.org [?] . What Linde heuristically derives is Newton’s F = ma and gravitational
force F = GMm/R2 from thermodynamical considerations plus something else which I try to
clarify (at least to myself!) in the following.

3.1 Verlinde’s Argument For F = Ma

The idea is to deduce Newton’s F = ma and gravitational force from thermodynamics by assuming
that space-time emerges in some sense. There are however various assumptions involved which more
or less impy that both special and general relativity has been fed in besides quantum theory and
thermodynamics.

1. Time translation invariance is required in order to have the notions of conserved energy
and thermodynamics. This assumption requires not only require time but also symmetry
with respect to time translations. This is quite a powerful assumption and time translation
symmetry not hold true in General Relativity- this was actually the basic motivation for
quantum TGD.
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2. Holography is assumed. Information stored on surfaces, or screens and discretization is
assumed. Again this means in practice the assumption of space-time since otherwise the
notion of holography does not make sense. One could of course say that one considers
the situation in the already emerged region of space-time but this idea does not look very
convincing to me.

Comment: In TGD framework holography is an essential piece of theory: light-like 3-
surfaces code for the physics and space-time sheets are analogous to Bohr orbits fixed by the
light-like 3-surfaces defining the generalized Feynman diagrams.

3. The first law of thermodynamics in the form

dE = TdS − Fdx .

Here F denotes generalized force and x some coordinate variable. In usual thermodynamics
pressure P would appear in the role of F and volume V in the role of x. Also chemical
potential and particle number form a similar pair. If energy is conserved for the motion one
has

Fdx = TdS .

This equation is basic thermodynamics and is used to deduce Newton’s equations.

After this some quantum tricks -a rather standard game with Uncertainty Principle and quan-
tization when nothing concrete is available- are needed to obtain F=ma which as such does not
involve ~ nor Boltzmann constant kB . What is needed are thermal expression for acceleration and
force and identifying these one obtains F=ma.

1. The condition ∆S = 2πkB states that entropy is quantized with a unit of 2π appearing as a
unit. log(2) would be more natural unit if bit is the unit of information.

2. The identification ∆x = ~/mc involves Uncertainty principle for momentum and position.
The presence of light velocity c in the formula means that Minkowski space and Special
Relativity creeps in. At this stage I would not speak about emergence of space-time anymore.

This gives

F = T
∆S

∆x
= T

2πmckB
~

.

F has been exressed in terms of thermal parameters and mass.

3. Next one feeds in something from General Relativity to obtain expression for acceleration
in terms of thermal parameters. Unruh effect means that in an accelerted motion system
measures temperate proportional to acceleration:

kBT =
~a
2π

.

This quantum effect is known as Unruh effect. This temperature is extremely low for ac-
celerations encountered in everyday life - something like 10−16 K for free fall near Earth’s
surface.

Using this expression for T in previous equation one obtains the desired F = ma, which would
thus have a thermodynamical interpretation. At this stage I have even less motivations for
talking about emergence of space-time. Essentially the basic conceptual framework of Special
and General Relativities, of wave mechanics and of thermodynamics are introduced by the
formulas containing the basic parameters involved.



3.2 Verlinde’s Argument For F = Gmm/R2 8

3.2 Verlinde’s Argument For F = Gmm/R2

The next challenge is to derive gravitational force from thermodynamic consideration. Now holog-
raphy with a very specially chosen screen is needed.

Comment: In TGD framework light-like 3-surfaces (or equivalently their space-like duals) rep-
resent the holographic screens and in principle there is a slicing of space-time surface by equivalent
screens. Also Verlinde introduces a slicing of space-time surfaces by holographic screens identi-
fied as surfaces for which gravitational potential is constant. Also I have considered this kind of
identification.

1. The number of bits for the information represented on the holographic screen is assumed to
be proportional to area.

N =
A

G~
.

This means bringing in blackhole thermodynamics and general relativity since the notion of
area requires geometry.

Comment: In TGD framework the counterpart for the finite number of bits is finite mea-
surement resolution meaning that the 2-dimensional partonic surface is effectively replaced
with a set of points carrying fermion or anti-fermion number or possibly purely bosonic sym-
metry generator. The orbits of these points define braid giving a connection with topological
QFTs for knots, links and braids and also with topological quantum computation.

2. It is assumed that the area of horizon corresponds to the area A = 4πR2 for the sphere with
radius which R which is the distance between the masses. This means a very special choice
of the holographic screen. Entropy obviously depends very sensitively on R.

Comment: In TGD framework the counterpart of the area would be the symplectic area of
partonic 2-surfaces. This is invariant under symplectic transformations of light-cone bound-
ary. These “partonic” 2-surfaces can have macroscopic size and the counterpart for blackhole
horizon is one example of this kind of surface. Anyonic phases are second example of a phase
assigned with a macroscopic partonic 2-surface.

3. Special relativity is brought in via the bomb formula

E = mc2 .

One introduces also other expression for the rest energy. Thermodynamics gives for non-
relativistic thermal energy the expression

E =
1

2
NkBT .

This thermal energy is identified with the rest mass. This identification looks to me com-
pletely ad hoc and I think that kind of holographic duality is assumed to justify it. The
interpretation is that the points/bits on the holographic screen behave as particles in ther-
modynamical equilibrium and represent the mass inside the spherical screen. What are these
particles on the screen? Do they correspond to gravitational flux?

Comment: In TGD framework p-adic thermodynamics replaces Higgs mechanism and iden-
tify particle’s mass squared as thermal conformal weight. In this sense inertia has thermal
origin in TGD framework. Gravitational flux is mediated by flux tubes with gigantic value
of gravitational Planck constant and the intersections of the flux tubes with sphere could be
TGD counterparts for the points of the screen in TGD. These 2-D intersections of flux tubes
should be in thermal equilibrium at Unruh temperature. The light-like 3-surfaces indeed
contain the particles so that the matter at this surface represents the system. Since all light-
like 3-surfaces in the slicing are equivalent means that one can choose the representation of
the system rather freely.
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4. Eliminating the rest energy E from these two formulas one obtains NT = 2mc2 and using
the expression for N in terms of area identified as that of a sphere with radius equal to the
distance R between the two masses, one obtains the standard form for gravitational force.

It is difficult to say whether the outcome is something genuinely new or just something resulting
unavoidably by feeding in basic formulas from general thermodynamics, special relativity, and
general relativity and using holography principle in highly questionable and ad hoc manner.

3.3 In TGD Quantum Classical Correspondence Predicts That Ther-
modynamics Has Space-Time Correlates

From TGD point of view entropic gravity is a misconception. On basis of quantum classical cor-
respondence - the basic guiding principle of quantum TGD - one expects that all quantal notions
have space-time correlates. If thermodynamics is a genuine part of quantum theory, also tempera-
ture and entropy should have the space-time correlates and the analog of Verlinde’s formula could
exist. Even more, the generalization of this formula is expected to make sense for all interactions.

Zero energy ontology makes thermodynamics an integral part of quantum theory.

1. In zero energy ontology quantum states become zero energy states consisting of pairs of
the positive and negative energy states with opposite conserved quantum numbers and inter-
preted in the usual ontology as physical events. These states are located at opposite light-like
boundaries of causal diamond (CD) defined as the intersection of future and past directed
light-cones. There is a fractal hierarchy of them. M-matrix generalizing S-matrix defines
time-like entanglement coefficients between positive and negative energy states. M-matrix
is essentially a “complex” square root of density matrix expressible as positive square root
of diagonalized density matrix and unitary S-matrix. Thermodynamics reduces to quantum
physics and should have correlate at the level of space-time geometry. The failure of the
classical determinism in standard sense of the word makes this possible in quantum TGD
(special properties of Kähler action (Maxwell action for induced Kahler form of CP2) due
to its vacuum degeneracy analogous to gauge degeneracy). Zero energy ontology allows also
to speak about coherent states of bosons, say of Cooper pairs of fermions- without problems
with conservation laws and the undeniable existence of these states supports zero energy
ontology.

2. Quantum classical correspondence is very strong requirement. For instance, it requires also
that electrons traveling via several routes in double slit experiment have classical correlates.
They have. The light-like 3-surfaces describing electrons can branch and the induced spinor
fields at them “branch” also and interfere again. Same branching occurs also for photons so
that electrodynamics has hydrodynamical aspect too emphasize in recent empirical report
about knotted light beams. This picture explains the findings of Afshar challenging the
Copenhagen interpretation.

These diagrams could be seen as generalizations of stringy diagrams but do not describe
particle decays in TGD framework. In TGD framework stringy diagrams are replaced with
a direct generalization of Feynman diagrams in which the ends of 3-D light-like lines meet
along 2-D partonic surfaces at their ends. The mathematical description of vertices becomes
much simpler since the 2-D manifolds describing vertices are not singular unlike the 1-D
manifolds associated with string diagrams (“eyeglass” in fusion of closed strings).

3. If entropy has a space-time correlate then also first and second law should have such and
Verlinde’s argument that gravitational force attraction follows from first law assuming en-
ergy correlation might identify this correlate. This of course applies only to the classical
gravitation. Also other classical forces should allow analogous interpretation as space-time
correlates for something quantal.

3.4 The Simplest Identification Of Thermodynamical Correlates In TGD
Framework

The first questions that pop up are following. Inertial mass emerges from p-adic thermodynamics as
thermal conformal weight. Could the first law for p-adic thermodynamics, which allows to calculate
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particle masses in terms of thermal conformal weights, allow to deduce also other classical forces?
One could think that by adding to the Hamiltonian defining partition function chemical potential
terms characterizing charge conservation it might be possible to obtain also other forces.

In fact, the situation might be much simpler. The basic structure of quantum TGD allows a
very natural thermodynamical interpretation.

1. The basic structure of quantum TGD suggests a thermodynamic interpretation. The basic
observation is that the vacuum functional identified as the exponent of Kähler function is
analogous to a square root of partition function and Kähler coupling strength is analogous
to critical temperature. Kähler function identified as Kähler action for a preferred extremal
appears in the role of Hamiltonian. Preferred extremal property realizes holography identi-
fying space-time surface as analog of Bohr orbit. One can interpret the exponent of Kähler
function as the density of states in the world of classical worlds so that Kähler function would
be analogous to entropy density. Ensemble entropy is average of Kähler function involving
functional integral over the world of classical worlds. This exponent is the counterpart for
the quantity Ω appearing in Verlinde’s basic formula.

2. The condition that the space-time sheets appearing in superposition of space-time surfaces
with given quantum numbers in Cartan algebra have same classical quantum numbers asso-
ciated with Kähler action can be realized in terms of Lagrange multipliers. These kind of
terms would be analogous to various chemical potential terms in the partition function. One
could call them measurement interaction terms.

Measurement interaction terms would code the values of quantum charges to the space-time
geometry. One can even consider the possibility of realizing quantum classical correspon-
dence in the strong sense that the classical correlation functions for appropriate observables
at space-time level are equal to their quantum counterparts and thus same for all space-time
surfaces in the superposition. Here one could restrict the consideration to correlation func-
tions with arguments restricted to 3-surfaces defined as union of space-like 3-surfaces at the
ends of space-time surface and possibly also parton orbits.

Kähler action contains also Chern-Simons term at partonic orbits compensating the Chern-
Simons terms coming from Kähler action when weak form of electric-magnetic duality is as-
sumed. This guarantees that Kähler action for preferred extremals reduces to Chern-Simons
terms at the space-like ends of the spacetime surface and one obtains almost topological
QFT.

In Verlinde’s formula there is exponential factor exp(−E/T − Fx) analogous to this kind
of Lagrange multiplier term. In TGD conserved charges multiplied by chemical potentials
defining generalized forces appear in the exponent.

3. If Kähler-Dirac action is constructed from Kähler action in super-symmetric manner by
defining the Kähler-Dirac gamma matrices in terms of canonical momentum densities one
obtains also the fermionic counterparts of the Lagrange multiplier terms at partonic orbits
and could call also them measurement interaction terms. Besides this one has also the
Chern-Simons Dirac terms associated with the partonic orbits giving ordinary massless Dirac
propagator. In presence of measurement interaction terms at the space-like ends of the space-
time surface the boundary conditions ΓnΨ = 0 at the ends would be modified by the addition
of term coming from the Kähler-Dirac gamma matrix associated with the Lagrange multiplier
terms. The original generalized massless generalized eigenvalue spectrum pkγk of Γn would
be modified to massive spectrum given by the condition

(Γn +
∑
i

λiΓ
α
QiDα)Ψ = 0 ,

where Qi refers to i: th conserved charge.

4. This gives an analog of thermodynamics in the world of classical worlds ( WCW ) for fixed
values of quantum numbers of the positive energy part of state. For zero energy states one
however has also additional thermodynamics - or rather, its square root. This thermody-
namics is for the conserved quantum numbers whose averages are fixed. For general zero
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energy states one has sum over state pairs labelled by momenta and various other quantum
numbers labelling the positive energy part of the state. The coefficients of the conserved
quantities of the measurement interaction term linear in conserved quantum numbers define
the analogs of temperature and various chemical potentials. The field equations defined by
Kähler function and chemical potential terms have thermodynamical interpretation and give
coupling to conserved charges and also to their thermal averages. What is important is that
temperature and various chemical potentials assigned to positive and negative energy parts
of the state allow a complete geometrization in a general coordinate invariant manner and
allow explicit expressions in terms of functions expressible in terms of the induced geometry.

To sum up, TGD suggests two thermodynamical interpretations. p-Adic thermodynamics is for
mass squared assuming conformal invariance and also the basic formulation of quantum TGD allows
thermodynamical interpretation. Actually, thermodynamics in both cases can be replaced with its
square root in ZEO. The thermodynamical structure of quantum TGD has of course served as a
guiding principle for two decades. In particular, quantum criticality as the counterpart of thermal
criticality has been extremely useful guide line and led to a breakthrough in the understanding of
the Kähler-Dirac equation during the last year. Also p-adic thermodynamics has been in the scene
for more than 15 years and makes TGD a theory able to make precise quantitative predictions.

Some conclusions drawn from Verlinde’s argument is that gravitation should be entropic in-
teraction, that gravitons do not exist, and that string models and theories introducing higher-
dimensional space-time are a failure. TGD view is different. Only a generalization of string model
allowing to realize space-time as surface is needed and this requires fixed 8-D embedding space.
Gravitons also exist and only classical gravitation as well as other classical interactions code for
thermodynamical information by quantum classical correspondence. In any case, it is encourag-
ing that also colleagues might be finally beginning to get on the right track although the path
from Verlinde’s arguments to quantum TGD as it is now will be desperately long and tortuous if
colleagues continually refuse to receive the helping hand.

4 Could The Notion Of Cosmological Constant Generalize?

4.1 Background

The play with Einstein’s equations and the attempts to interpret them physically forced the return
to and old interpretational problem of TGD. TGD allows enormous vacuum degeneracy for Kähler
action but the vacuum extremals are not gravitational vacua. Could this mean that TGD forces to
modify Einstein’s equations? Could space-time surfaces which would carry energy and momentum
in GRT frameword be vacua in TGD context?

Trying to understand what is involved led to the realization that the hypothesis that pre-
ferred extremals correspond to the solutions of Einstein-Maxwell equations with cosmological con-
stant [K10, K2, K9] is too restricted in the case of vacuum extremals and also in the case of standard
cosmologies imbedded as vacuum extremals. What one must achieve is the vanishing of the di-
vergence of energy momentum tensor of Kähler action expressing the local conservation of energy
momentum currents. The most general analog of Einstein’s equations and Equivalence Principle
would be just this condition giving in GRT framework rise to the Einstein-Maxwell equations with
cosmological constant.

One can however wonder whether it could be possible to find some general ansätze allow-
ing to satisfy this condition. This kind of ansätze can be indeed found and can be written as
kG +

∑
ΛiPi = T , where Λi are cosmological “constants” and Pi are mutually orthogonal pro-

jectors such that each projector contribution has a vanishing divergence. One can interpret the
projector contribution in terms of topologically condensed matter, whose energy momentum tensor
the projectors code in the representation kG = −

∑
ΛiPi+T . Therefore Einstein’s equations with

cosmological constant are generalized. This generalization is not possible in General Relativity,
where Einstein’s equations follow from a variational principle. This kind of ansätze can be indeed
found and involve the analogs of cosmological constant, which are however not genuine constants
anymore. Therefore Einstein’s equations with cosmological constant are generalized. This gener-
alization is not possible in General Relativity, where Einstein’s equations follow from a variational
principl
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The suggested quaternionic preferred extremals and preferred extremals involving Hamilton-
Jacobi structure could be identified as different families characterized by the little group of particles
involved and assignable to time-like/light-like local direction. One should prove that this ansatz
works also for all vacuum extremals. This progress - if it really is progress - provides a more refined
view about how TGD Universe differs from the Universe according to General Relativity and leads
also to a model for how the cosmic honeycomb structure with basic unit cells having size scale 108

ly could be modelled in TGD framework.
The original problem was however not this but the following one. One can decompose Euclidian

icosahedron to 20 irregular tetrahedrons emanating from the center of the icosahedron. The ratio
of the lengths of the surface edges (edges connecting points at the surface of the sphere) to the
radial edges is in good approximation k = 1+ε, ε = .05. If one makes the edges of the tetrahedrons
equal by shortening of surface edges while preserving the lengths of the radial edges, one obviously
obtains a gap [D1].

Is there any manner to make the tetrahedrons regular without creating a gap?

1. At sphere S3 the counterpart of icosahedron consists of 20 counterparts of regular tetra-
hedrons. One can say that the generation of positive curvature eliminates the gap formed
and shortens the surface edges. Deforming Euclidian space to hyperbolic space in turn adds
volume. In 2-D case these rules can be visualized. In fact, one can extend the icosahedron
to 600-cell denoted by (3, 3, 5) in Schönflies notation (see http://tinyurl.com/y7x5nakm).
What the recursive notation (3, 3, 5) states is that there are 5 tetrahedra (3, 3) with common
edge and tetrahedra in turn has 3 triangles with common vertex. The 4-D 600-cell has as
boundary 600 tetrahedra assignable to a surface of 3-sphere in a way completely analogous
to the Platonic solids regarded as 2-D surfaces bounding 3-D cells.

2. One is however interested in possibly existing Euclidian variants of tetrahedral Penrose tiling
and QC, and perhaps also in tetrahedral dense packing (see http://tinyurl.com/y87douv6)
(still poorly understood), which must be however distinguished from tetrahedral QC which
can quite well contain intersecting tetrahedrons. The problem is that it is difficult to imagine
a unique Euclidianization by somehow mapping S3 to E3. Here different topologies pose the
basic problem: one cannot avoid local deformations and the presence of singular 2-D surface.
The best that one can hope of achieving are clusters of 600 tetrahedra.

The TGD inspired idea to be discussed is that sub-manifold gravity could help to achieve a
unique map from S3 to E3 and also the counterparts the isosahedral Penrose tiling with icosahe-
drons consisting of regular tetrahedrons.

1. This would be achieved by a local deformation of the E3 metric obtained by deforming
canonically imbedded E3 in CP2 directions to make the 20 tetrahedra in the decomposition
of the icosahedron regular and space-filling. This deformation would be just a piece of S3,
say the upper hemisphere. Entire S3 would require two-sheeted 3-surface and is also possible
in TGD. The Euler angles (α, θ, φ) for S3 would correspond to the spherical coordinates of
(r, θ, φ) via the formula: α = arcsin(r/R), where R is the radius of S3.

2. Although the S3 tetrahedra in the induced metric are regular, they do not look so in E3 met-
ric, and an interesting question is whether the irregularity of the tetrahedral structures seen
in 3-space usually identified as E3 could correspond to regularity in S3. The correspondence
between coordinates allows to predict precisely the E3 coordinates of tetrahedral vertices in
the decomposition of S3 icosahedron so that the hypothesis is testable. The physics of water
provides an especially interesting test bench for the idea.

3. It is also possible to imagine a construction crystal and quasicrystal (QC) like structures
consisting of tetrahedrons by gluing together pieces of S3 realized as static surfaces in M4×
CP2 along their boundaries just as one glues together cubes along their faces to build cubic
crystals. Note that this proposal for tetrahedral QC differs from the earlier proposal for
twisted QC (see http://tinyurl.com/y9x8o8dp) [?] in which each supercell (icosahedron
for Penrose tiling, and icosahedron, dodecahedron, or icosidodecahedron for icosahedral QC)
contains single tetrahedron twisted so that it does not intersect the tetrahedra of neighboring
and possibly intersecting supercells.

http://tinyurl.com/y7x5nakm
http://tinyurl.com/y87douv6
http://tinyurl.com/y9x8o8dp
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Deformations of pieces of E3 to pieces of S3 is not the only possibility. Also deformations
respecting the topology of E3 are possible.

1. One can consider a more general deformation of the metric of E3 to ds2 = k2(r)dr2 + r2dΩ2.
One obtains an infinite family of functions k(r) satisfying the condition that an icosahedron
with center at North pole (r, θ, φ) = (0, 0, 0) of S3 consists of regular tetrahedrons since the

only condition is
∫ R

0
k(r)dr = s, where s is the length of the surface edge and integral defines

the length of the radial edge. k = 1+δ = constant option however fails as shown in Appendix
C. In Appendix B it is shown that the 1+3 decomposition kG+

∑
i=1,2 ΛiPi allow to deduce

differential equation for k(r) but still one has a large number of solutions guaranteeing the
regularity of the icosahedral tetrahedra.

2. If one accepts also deformations with more general functions k(r) deduced in Appendix B,
quite large number of quasi-lattice like structures consisting of regular tetrahedra becomes
possible. One can ask whether these geometries could define possible tetrahedral quasi-
lattice structures for water clusters having interpretation as some kind of geometric coding
of information so that the apparent randomness would reflect hidden geometric order.

In GRT framework the deformation of E3 to S3 or a non-compact manifold for more general
k(r) and icosahedral Penrose tiling [A1] with icosahedrons consisting of 20 regular tetrahedrons
are not plausible in condensed matter length scales for the simple reason that the gravitational
deformation of the metric is so weak. If one accepts the cautious proposal for TGD variant of
Equivalence Principle, it might be possible to realize these tetrahedral dreams. The projector
contributions −ΛiPi would represent average density of topologically condensed whereas T would
be vanishing for vacuum extremals.

It becomes also possible to build a model for cosmic honeycombs and quasicrystal like structures
consisting of units with size of order 108 ly and having galaxies at the boundaries of otherwise almost
empty regions known as cosmic voids (see http://tinyurl.com/ycvlesgt) [E1]. The basic unit
would be either a piece of hyperbolic space, of Euclidian space, or of 3-sphere. In hyperbolic case
there is infinite number of tessellations. In GRT framework these pieces could carry a constant
mass density (sub-critical, critical, or over-critical) but in TGD framework they would be vacua
and galactic mass would be associated with their boundaries and idealizable as being due to the
discontinuity of the normal component gnn of the induced metric at the 3-D facets along which the
super-cells are glued together. The time evolution of critical and super-critical options is unique
part from the duration of the nonsingular period, and leads to TGD counterpart of blackhole
having Euclidian induced metric. Note that cosmic honeycomb would provide a rather concrete
realization for the notion of space-time foam usually assigned with Planck length scale.

It deserves to be mentioned that cosmic honeycombs and their possible counterparts for wa-
ter clusters modeled as consisting of icosahedral pieces of S3 bring in mind foams (see http:

//tinyurl.com/3a29pz). Soap film foam is perhaps the most familiar example about foam.
Plateau’s laws (see http://tinyurl.com/y7rrstej) govern the structure of many foams. Mean
curvature is constant for each film and physically derives from area minimization assuming constant
pressure difference over the film. 3 films meet at angle of 120 degrees along a line known as Plateau
border and 4 Plateau borders meet at each vertex at tetrahedral angle of arcos(−1/3) ' 109.47
degrees (tetrahedral angle is defined as the angle between radii drawn from the center of tetrahe-
dron to its vertices). This suggests spherical tetrahedron as a basic building brick in a model as a
honeycomb built from pieces of S3. Plateau’s laws can be derived mathematically for foams, for
which films are minimal surfaces (pressure difference vanishes).

4.2 Does The SO(3) Symmetry Preserving Deformation Of The Metric
Of E3 Regularize The Icosahedral Tetrahedra?

In GRT framework quantum gravitational effects are extremely small in everyday length scales -
say in condensed matter physics. In TGD the situation can be different due to sub-manifold gravity
predicting new physical effects. Sub-manifold gravity and the notion of many-sheeted space-time
indeed challenges the flatness of 3-space as approximation broken only by very weak gravitational
effects. The field equations demand that Kähler energy momentum tensor has vanishing divergence.

http://tinyurl.com/ycvlesgt
http://tinyurl.com/3a29pz
http://tinyurl.com/3a29pz
http://tinyurl.com/y7rrstej
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This can be guaranteed if Einstein-Maxwell equations with cosmological term are satisfied: both
are in principle predictions of the theory and depend on the preferred extremal [K10].

This is however not the most general option if one is ready to accept TGD and allow the
decomposition of the cosmological constant term to a sum of terms proportional to projectors to
orthogonal subspaces multiplied with cosmological “constants”, which are not constant anymore.
The interpretation of the sum of these terms in kG = −

∑
i ΛiPi + T is in terms of topologically

condensed matter representing topological inhomogenuities smaller than the length scale resolution
used (for a more detailed discussion see Appendix A). Therefore it might be also physically possible
to modify the 3-metric without giving up SO(3) symmetry and the topology of E3, and there would
be no need to map S3 to E3 in the hope of obtaining what might be called tetrahedral Penrose
tiling. In fact, also a deformation of a piece of E3 to that of S3 exists and defines this kind of map
uniquely.

An obvious deformation of Euclidian metric is obtained by the scaling of the radial component
of the E3 metric

ds2 = dr2 + r2dΩ2 → k2(r)dr2 + r2dΩ2 , k = 1 + δ . (4.1)

k(r) could be fixed by the condition that the radial edges of the 20 icosahedral tetrahedra have
the same length as the surface edges defined as geodesic lines in the deformed metric. This poses
a condition on k(r) but it is not at all obvious whether any solutions to the condition exist.

1. SO(3) symmetry alone allows k(r) to be an arbitrary function of the radial coordinate.
The original guess was k = 1 + δ(r) with δ(r) ≥ 0 non-vanishing only near the center of
the icosahedron so that in the region containing surface edges the metric would be strictly
Euclidian. The deviation from E3 metric near the center of the icosahedron could be due
to the presence of a particle. δ = constant option is excluded as shown in Appendix C but
in Appendix B good arguments supporting δ(r) → 0 option are developed. The regularity
of the tetrahedral decomposition of the icosahedron with center at (r, θ, φ) = (0, 0, 0) follows
from the assumption that radial and surface edges have same length:

∫ R

0

k(r)dr = s , (4.2)

where s is the length of the surface edge of the icosahedron identified as geodesic line.

2. The local deformation of E3 metric to S3 metric obtained by allowing CP2 coordinates to
depend on r having k(r) = 1/(1 − (r/R)2) certainly gives rise to a decomposition of S3

icosahedron to 20 regular S3 tetrahedrons realized as as a piece of S3 - say around North
pole so that one has radial and surface edges of equal length in S3 metric but not so in E3

metric. Entire S3 requires two-sheeted surface and is also possible to realize in TGD context.
This would allow to realize the 600-cell consisting of 600 tetrahedrons.

These conjecture might be testable. A successful test would also provide support for sub-
manifold gravity.

1. The correspondence (α, θ, φ) = (arcsin(r/R), θ, φ) between Euler angles of S3 and spherical
coordinates of E3 allows a precise identification of E3 coordinates of tetrahedra and thus
precisely quantifies the deviation of regular S3 tetrahedra from regular E3 tetrahedra.

2. In E3 metric the tetrahedrons do not look regular, and an interesting possibility is that the
icosahedral structures encountered in water clusters could be interpreted in terms of regular
S3 tetrahedrons, when the 3-space is not identified as E3 but consists of icosahedral pieces
of S3 glued together along S3 faces.

3. For a more general family of functions k(r) similar conditions hold true and would allow
quite a large number of quasi-lattice like structures consisting of icosahedra decomposing
to 20 regular tetrahedrons. For a given k(r) satisfying the differential equation deduced in
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Appendix A and the regularity condition s =
∫
kdr, one can predict the precise positions for

the vertices of icosahedral tetrahedrons in the spherical coordinates for E3. The functions
k(r) could make possible to code information to the deformations of E3 tetrahedrons from
regularity. Again water provides the test bench.

Single isosahedron consisting of regular tetrahedrons or even 600-cell or half of it is not enough.
One would like to have also Penrose tiling having icosahedrons as supercells. Since the proposed
deformation of the metric is not translationally invariant but has the center of the icosahedron as
a center of symmetry, the only possibility is to glue together their E3 (realized as t = constant
hyper-plane of M4) translates of the basic icosahedron along common faces. One must allow also
intersections of icosahedrons and therefore also of tetrahedrons as already for the triangles of the
ordinary Penrose tiling obtained by replacing 20 tetrahedrons with 10 triangles and icosahedron
with 10-gon. Clearly, tetrahedral Penrose tiling must be distinguished from tetrahedral dense
packing. Physically this means that tetrahedral supercells can have common atoms.

The following arguments try to demonstrate that in TGD framework there are good hopes
for tetrahedral Penrose tiling having by definition regular S3 tetrahedrons as possibly overlapping
super-cells and induced from icosahedral Penrose tiling. Whether the icosahedral QC containing
icosahedra, dodecahedra, and icosidodecahedra as super-cells allows a decomposition to regular
tetrahedra for all 3 super-cells, is probably easy to answer. The argument is of course purely
mathematical, and the question whether the construction is also physically realizable remains
open.

4.2.1 Strong gravitation is possible in TGD framework

The basic motivation for the speculations to follow is that many-sheeted space-time makes possible
large deviations from gravitation predicted by GRT, which in TGD framework can be seen as a
description of gravitation at the long length scale limit. A fundamental distinction between GRT
and TGD is indeed that in TGD framework gravitational constant and cosmological constant -
actually space-time dependent cosmological “constants” emerge as predictions of the theory rather
than as fundamental constants of Nature.

For almost two decades ago I deduced by purely dimensional considerations a formula for
gravitational constant G in terms of p-adic length scale and exponent of Kähler action for CP2

type vacuum extremal defining the line of generalized Feynman diagram representing graviton [K7].
The prediction was that G should have an entire spectrum of values and approach p-adic length
scale squared L2

p = pR2
CP2

when the action of the deformed CP2 type vacuum extremal becomes
small: this happens at short length scale limit. In particular, hadronic strings would correspond
to strong gravitation limit, and TGD predicts fractally scaled up variants of ordinary hadron
physics so that a rich spectrum of strong gravities follows as a prediction. This means that in
TGD Universe the the gravitational effects on space-time geometry can be rather dramatic even
in condensed matter length scales whereas in GRT the effects are extremely small.

The starting point for the following considerations was the question whether the flat geometry
for a piece of E3 could be modified by gravitational effects so that it becomes a piece of S3 allowing
the decomposition of icosahedron to 20 regular tetrahedra (in E3 geometry the tetrahedra cannot
be regular). This kind of decomposition is actually possible for much more general deformations
of E3 geometry and one ends up with the vision about quasi-lattice like structures having piece
of S3 or hyperbolic space H3 as a basic building brick. This notion makes sense in condensed
matter length scales only if gravitational constant can be of order G ∼ L2

p since Schwartschild
radius rS = 2GM is the natural scale for the radius of S3.

The cosmic honeycomb having voids with size of order 108 ly as basic building bricks is one
possible quasi-lattice like structure suggested by these considerations. In condensed matter length
scales strong gravitation could allow similar quasi-lattice like structures and icosahedral water
clusters having tetrahedrons as building bricks could be examples of structures of this kind.

Cosmic honeycombs and their possible counterparts for water clusters modeled as consisting
of icosahedral pieces of S3 bring in mind foams (see http://tinyurl.com/3a29pz). Soap film
foam is perhaps the most familiar example about foam. Plateau’s laws (see http://tinyurl.

com/y7rrstej) govern the structure of many foams. Mean curvature is constant for each film and
physically derives from area minimization assuming constant pressure difference over the film. 3

http://tinyurl.com/3a29pz
http://tinyurl.com/y7rrstej
http://tinyurl.com/y7rrstej
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films meet at angle of 120 degrees along a line known as Plateau border and 4 Plateau borders meet
at each vertex at tetrahedral angle of arcos(−1/3) ' 109.47 degrees (tetrahedral angle is defined
as the angle between radii drawn from the center of tetrahedron to its vertices). This suggests
spherical tetrahedron as a basic building brick in a model as a honeycomb built from pieces of
S3. Plateau’s laws can be derived mathematically for foams, for which films are minimal surfaces
(pressure difference vanishes).

4.2.2 Construction of deformed metrics in zero energy ontology

In TGD framework the view about 3-space generalizes considerably. One assigns to physical
systems space-time sheets and space-time sheets can deviate metrically from flat space much more
than in general relativity. The can have even Euclidian signature of metric: this signature is
assigned to the 4-D lines of generalized Feynman diagrams. which can have macroscopis scale and
can be tentatively identified as the space-time regions characterizing physical objects as we “see”
them.

Vacuum extremals [K2] provide some illustrative examples. Consider a geodesic circle of CP2

with angle coordinate Φ and the 4-surface Φ = ωt, where t is M4 time coordinate. The induced
metric is (1 − R2ω2,−1,−1,−1) and obviously flat. There is no gravitational field present but
there is anomalous time dilation, which can be detected if it is possible to use M4 coordinates of
the M4 factor of M4 × CP2 as preferred coordinates - as the fact that Poincare symmetries are
associated with embedding space rather than space-time surface suggests.

Causal diamonds (CDs) define an essential element of zero energy ontology (ZEO). CD is
a double pyramid (with spherical cross section) defined by the intersection of future and past
directed light-cones of M4 and has two light-like boundaries. CD × CP2 defines what might be
called a spot light of consciousness in TGD inspired theory of consciousness. Zero energy states
correspond to pairs of positive and negative energy states having opposite total quantum numbers,
and assignable to the opposite light-like boundaries δM4

±×CP2. Zero energy states correspond to
quantum superpositions of pairs of 3-surfaces at the boundaries of δ±CD × CP2: by holography
they can be also regarded as superpositions of preferred extremals. Strong form of holography
allows to express physical states in terms of information associated with partonic 2-surfaces and
their 4-D tangent space data.

1. Deformation of E3 metric to guarantee the regularity of icosahedral tetrahedrons

Usually one thinks that in every-day length scales 3-space is flat E3 apart from very small
gravitational effects. In cosmological scales 3-space is known to be flat in good approximation on
basic of CMB data. In short scales mass densities can be however much higher than in cosmic scales
(one proton per cubic meter roughly) so that a local compactification to overcritical cosmology
consisting of a piece of S3 could take place. The compactification could be interpreted as being due
to the presence of topologically condensed matter. These pieces could in turn be glued together
along their boundaries to obtain lattices and quasi-lattice like structures. As shown in Appendix
A, this kind of local S3 compactifications can be both static and expanding. In the latter case, the
cosmic time evolution is essentially unique and leads to a singularity, for which the induced metric
has Euclidian signature and has interpretation as a TGD counterpart of a blackhole.

Remark: The discussion of Appendix A shows that also static deformations of E3 to hyperbolic
space H3 are possible, and in this case one would obtain an infinite number of tessellations defined
by discrete subgroups of SO(1, 3) including 8 honeycomb structures. Icosahedral quasi-lattice
structures encountered in the physics of water provide again a test bench. Now the correspondence
(η, θ, φ) = (arsinh(r/R), θ, φ) between hyperbolic “Euler angles” and spherical coordinates of E3

would allow to deduce how the H3 icosahedra (say) and the honeycombs made of them differ from
their E3 counterparts.

Before continuing, some background in TGD is needed. In TGD framework macroscopic objects
correspond to 4-surfaces with effective boundaries defined by light-like 3-surfaces at which the
signature of the induced metric changes from Minkowskian to Euclidian. The above observations
suggest the possibility of large physical effects on metric in the absence of effects on curvature.
But even large effects on curvature cannot be excluded.

One can indeed consider more general metrics for which grr = k2(r) holds true. By previous
argument, these metrics are just what one wants if one is interested in icosahedral Penrose tiling



4.2 Does The SO(3) Symmetry Preserving Deformation Of The Metric Of E3

Regularize The Icosahedral Tetrahedra? 17

with icosahedrons decomposed to regular tetrahedra. Note that the metrics in question are highly
analogous to those for Robertson-Walker cosmologies with over-critical mass density: the only
difference is that time coordinate is replaced with radial coordinate r and S3 with S2.

For the case k = k(r) case the expressions of Ricci and Einstein tensor are given by the
expressions

(Rrr, Rθθ, Rφφ) = (X,Y, sin2(θ)Y ), ,

(Grr, Gθθ, Gφφ) = (X − k2

r2 Y,−
1
2
r2

k2X,−
1
2
r2sin2(θ)

k2 X) .

X = −4dlog(k)
dlog(r)X , Y = k−2 − 1− 1

2
dk−2

dlog(r)) .

(4.3)

For k = constant the Ricci tensor and Einstein tensor have components

(Rrr, Rθθ, Rφφ) = (0, r2, r2sin2(θ))× (k−2−1)
r2 ,

(Grr, Gθθ, Gφφ) = ((1− k2)/r2, 0, 0) .

(4.4)

The vanishing of Gθθ and Gφφ can be understood in terms of symmetries. For 4-D solution obtained
by adding M4 time coordinate as fourth coordinate this would mean that energy density T tt is
non-vanishing and proportional to (k−2 − 1))/r2.

2. The modification of Einstein’s equations suggested by TGD

The deformation of E3 can be generalized in trivial manner to 4-D situation giving Gtt =
k−2Grr is in general not consistent with the assumption that preferred extremals (4-surfaces) at the
limit of vacuum satisfy Einstein-Maxwell equations with cosmological term satisfying T = κG+Λg,
whereT is the energy momentum tensor associated with Kähler action satisfying Tαα = 0 since
Maxwell action is invariant under conformal scalings (in TGD this symmetry is actually broken
since Maxwell field is not primary field).

This form of the conditions is however un-necessarily strong. The only condition on preferred
extremals is that T has vanishing divergence:

DβT
αβ = 0 . (4.5)

One can however go further and ask whether there might be general ansätze allowing to satisfy
this condition.

The first thing to observe that the condition reduces to

jαJαβ = 0 . (4.6)

One can of course ask whether this condition satisfied also by the extremals of the ordinary Maxwell
action is the most general condition that one can deduce from the local conservation of energy
momentum. The condition states that the Lorentz force on and the work done by Kähler current
in the induced Kähler field vanish. For Maxwell’s equations the condition jα = 0 guarantee the
condition. In TGD framework light-likeness of Kähler current holding for massless extremals is a
more general manner to satisfy the condition. An open question is whether more general solutions
to the condition exist.

One however ask whether some condition on metric could be assigned with the condition on
Kähler current. The vanishing of the divergence can be indeed satisfied by assuming only

Tαβ = κGαβ +
∑
i

ΛiP
αβ
i ,

κ =
1

8πG
. (4.7)
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Here Pi are projectors to mutually orthogonal sub-spaces of the tangent space of the space-time
surface. The distributions of the sub-spaces must be integrable to slicings of the space-time surface
by sub-manifolds and define di-dimensional sub-manifolds of the space-time surface (

∑
i di = d).

Energy momentum tensor of Kähler action has vanishing divergence if one has

Dβ(ΛiP
αβ
i ) = 0 . (4.8)

Λi need not be constant functions anymore so that cosmological constant is replaced by two -
presumably slowly varying - cosmological “constants”. For Λi = Λ one obtains just the ordinary
cosmological constant, which must be a genuine constant.

The condition Tαα = 0 gives

κR =
∑
i

Λidi . (4.9)

Here R denotes curvature scalar and di denotes the dimension of sub-space to which Pi projects.
For Λi = Λ one obtains κR = Λ so that curvature scalar would be constant, which looks too strong
a condition.

In TGD framework the most natural identification of the term
∑

ΛiPi would be in terms of
topologically condensed matter consisting of topological in-homogenities smaller than the scales of
length and time resolution. In zero energy ontology the interpretation would be in terms of zero
energy states in scales below the measurement resolution and interpreted as quantum fluctuations
in QFT context.

In Appendix A the situation is considered in more detail.

1. It is shown that for Robertson-Walker cosmologies 1+3 decomposition is natural.

2. For preferred extremals with what I have called Hamilton-Jacobi structure [K10] in Minkowskian
regions one would have 2+2 decomposition. Maybe the 1+3 decomposition corresponds to
the quaternionic solution ansatz. The motivation for this belief is that SO(3) has a natural
action on quaternions as their automorphism group. For Hamilton-Jacobi structure SO(3) is
replaced with the little group of Poincare group assignable to massless particles so that these
two kinds of extremals might basically correspond to massive and massless representations
of Poincare group.

3. For vacuum extremals the inverse images of points of at most 2-D CP2 projection define 2+2
slicing of the space-time surface, and one can hope that this slicing could give rise to the
decomposition

∑
i=1,2 ΛiPi. It is of course quite possible that not all vacuum extremals can

be regarded as limits of preferred extremals with this decomposition.

In the recent case one is interested on having such k(r) that one has vacuum extremal with
1+1+2 decomposition satisfying

κGαβ +
∑

i=1,2,3

ΛiP
αβ
i = 0 ,

DβΛiP
αβ
i = 0 . (4.10)

1 + 1 + 2 decomposition corresponds to coordinate lines for t and r and to spheres (θ, φ). In
Appendix B the differential equations for k(r) guaranteeing that ΛiP

i have vanishing divergence
are deduced.

These equations can be integrated and give rise to a family of metrics characterized by k(r).
Near the center of icosahedron the deformation corresponds to S3 in a good approximation. S3

and H3 are obtained as particular solutions. For S3 the decomposition of icosahedron to regular
tetrahedrons is possible as already shown. The important and definitely new point of view is that
these metrics are vacuum extremals for both Kähler action and in gravitational sense. Einstein’s
equations are replaced by a more general and weaker condition that the energy momentum tensor
of Kähler action has a vanishing divergence.
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4.2.3 Various realizations of E3 and its deformations in TGD framework

TGD allows several realizations of E3 and its deformations as a surface in M4 × CP2.

1. Deformation of the embedding of E3 to δM4
± × CP2

Flat 3-metric is obviously something very fundamental, and one can ask whether one could
realize flat 3-surfaces as surfaces in δ±CD×CP2. The metric at δ±CD is metrically 2-D since the
radial direction is light-like, and one can write the metric as

ds2 = −r2dΩ2 .

For a given value of the radial coordinate r the metric of 2-sphere of radius r is in question.
One can have 3-surfaces in δ±CD × CP2 with non-degenerate 3-metric by assuming that CP2

coordinates depend on the coordinates of δ±CD - that is light-cone boundary. If CP2 coordinates
depend on r only, the induced metric is still rotationally symmetric, and the induced metric reads
as

ds2 = grrdr
2 − r2dΩ2 , grr = skl

dsk

dr

dsl

dr
.

For grr = −1 one obtains flat metric of E3. This condition has a huge number of solutions since
three CP2 coordinates can be chosen to be almost arbitrary functions of r and the fourth one
can be solved from the condition for the metric. The restrictions come only from the condition
grr = −1 combined with the Euclidian character of CP2 metric. The simplest solution is obtained
by taking the CP2 projection to be a geodesic circle so that one obtains r = Φ/R indeed giving
grr = −1.

One can obtain also a deformation allowing decomposition of the icosahedron to regular tetra-
hedrons by modifying the basic condition to grr = −k2, k = 1 + δ. It is however not obvious
whether this deformation can be continued to a 4-surface with vanishing Einstein tensor. A nat-
ural continuation of the 3-surface at light-cone boundary to a 4-D space-time surface is obtained
by using a slicing of the future light-cone by parallel light-cones along time-like line and having
identical 3-metric. Since the coordinate r corresponds to a light-like coordinate v in the pair of
(u = t− r, v = t+ r) of the standard light-like coordinates of M4, the line element would be

ds2 = 2dudv − k2dv2 − r2dΩ2 ,

and Einstein tensor vanishes for a constant value of the parameter k also now.

2. The deformations of standard embeddings of E3 and M4

One can also consider the deformation of the standard embedding of E3 as t = constant hyper-
surface of M4) obtained by decomposing E3 to icosahedra consisting of 20 irregular tetrahedra.
Also now one can deform the embedding near he center of each icosahedron so that the radial
edges have same length as the surface edges. One starts from the metric of E3

ds2 = −dr2 − r2dΩ2 ,

and deforms it to

ds2 = −k2(r)dr2 − r2dΩ2 . (4.11)

For small deformations one has k = +ε(r). The deformation is of the same form as before and
satisfies the conditions:

sk = sk(r) , skl
dsk

dr

dsl

dr
= 1− k2(r) = −2δ(r)− δ2(r) ,

∫
δ(r)dr = ε ' .05 . (4.12)

In this case the icosahedral Penrose tiling is essentially identical with the standard one except for
the modification of the metric near the center of the icosahedron. Besides this kmust satisfy also
the differential equation deduced in Appendix B.
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This metric can be generalized to a deformation of M4 metric by adding the time coordinate
so that one has

ds2 = dt2 − k2(r)dr2 − r2dΩ2 . (4.13)

3. Deformation of E3 to hyperbolic space H3

One can also consider a deformation of M4 replacing E3 hyperbolic 3-space H3.

1. In this case the embedding, induced metric, and conditions on it are given by the following
equations:

m0 = Λt+ h(u) , Φ = f(u) + ωt , u = r
R ,

gtt = Λ2 −R2ω2 = 1 , grr = −1− ( dfdu )2 + (dhdu )2 = − 1
1+r2 , gtr = −Rω1

df
du + Λdh

du = 0 .
(4.14)

2. The solution to the conditions reads as

Λ2 = 1−R2ω2 , h = Rω1

Λ f(u) , f(u) = f0 + 1
2 (1− (ω1R/Λ)2)−1/2log( 1+r2

1+r20
) . (4.15)

The deformation is well-defined everywhere. There exists actually infinite number of defor-
mations of this kind since the geodesic circle can be replaced with an almost arbitrary curve
of CP2.

4. What about corrections to gtt component of the stationary metric?
What about gtt component of the metric? Should it be given in the Newtonian approximation

gtt = 1 − 2φgr. This looks reasonable. The correction has several consequences. The 1+1+2
decomposition would be replaced with 2 + 2 decomposition, the gtt metric would be slightly modi-
fied, and he embedding to CP2 must be replaced with 2-D vacuum extremal. Homologically trivial
geodesic sphere S2 ⊂ CP2 would provide the simplest embedding as a vacuum extremal, and the
embedding is of the same form as that for H3 metric already discussed

m0 = Λt+ h(u) , Θ = Θ(u) , Φ = f(u) + ωt , u = r
R , (4.16)

giving

gtt = Λ2 −R2ω2sin2(Θ)ω2 = 1 + 2Φgr , grr = −1− sin2(Θ)( dfdu )2 + (dhdu )2 − (dΘ
du )2 = − 1

1−(r/R)2 ,

gtr = −RΛωsin(Θ) dfdu + Λdh
du = 0 , Φgr = K(u2 − u2

0) < 0 ,

K = nGR2ρ .

(4.17)

n is a numerical constant. Note that the sign of Φgr should be negative as a sum of negative
Coulomb contributions and the additive constant u2

0 > 1 not affecting Newton’s equations guar-
antees this for S3. The deviation of gtt from flat metric is however very small in general.

The condition on gtt gives

sin2(Θ) =
Λ2 − 1 + 2K(u2 − u2

0)

R2ω2

so that the embedding fails at certain radii r corresponding to sin2(Θ) = 0 and sin2(Θ) = 1. u = 1
could correspond to r = R and to sin2(Θ) = 1 and u = 0 to sin2(Θ) = 1.

In the hyperbolic case the sign of T tt is negative which suggests that the sign of K in Φgr is
also opposite so that gravitational attraction would transform to repulsion. This can make sense
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only if the topologically condensed matter corresponds to the negative energy part of zero energy
state with non-standard arrow of geometric time. Also now the embedding fails above some critical
value of u2.

What is remarkable that the deviation of the 3- metric from that of E3 can be large although
the effect on geodesic lines with small average radius r is very small since the non-constancy of grr
becomes visible only when the radial velocity dr/dt is non-vanishing. For instance, the deviation of
grr from its expression in flat or Schwartschild metric does not effect at all circular geodesic lines
which are determined by gtt. Hence one can imagine the possibility of having large gravitational
effects on 3-metric not visible as large gravitational binding energies.

The cold shower is encountered when one assumes Einstein’s equation for the mass density
responsible for

ρ = T tt '
R3

16πG
=

3

8πGR2
=

3M

2πR3
. (4.18)

This gives R = 4GM = 2rS , rS the Schwartshild radius, which is extremely small distance unless
the density of the topologically condensed matter is huge.

In TGD framework one way out of the problem could be based on the fact that both G and
Λi are predictions rather than fundamental constants in TGD framework. If one accepts this, one
an consider the possibility that G ∼ R/M holds true. In fact, I have proposed for a long time
ago [K9, K7] a formula for G (see http://tinyurl.com/y9e22rr6) in terms of p-adic length scale
Lp and exponential of Kähler action for CP2 type vacuum extremals as

G =
L2
p

~
exp(−SK(CP2)) =

1

~
pR2

CP2
exp(−SK(CP2)) . (4.19)

Here RCP2 denotes the length of CP2 geodesic circle. For p = M127 = 2127 − 1 - the Mersenne
prime characterizing electron and the largest Mersenne prime, which does not correspond to a
completely super-astrophysical length scale - one obtains the Newtonian value of G [K9, K7].

The Kähler action assignable to the deformation of CP2 type vacuum extremal corresponds
to the generalized line of Feynman diagram assignable to graviton. SK can vary due to the
finite length of the line so that a full vacuum extremal is not in question as well as due to the
deformation of the extremal. The exponential dependence on SK can give rise to a huge variation
range of G, and in the extreme situation one G and be near to the the upper bound Gmax = L2

p/~.
G = Gmax/2n M ' n~/Lp would give R = Lp = ~/M . This would make sense in hadronic,
nuclear and condensed matter length scales. I have indeed proposed that hadronic string tension
has interpretation in terms of G ∼ L2

p: the interpretation would be in terms of strong gravitation
made possible by spin 2 meson exchanges. I have also proposed that fractally scaled up variants
(see http://tinyurl.com/ycr66cae) of QCD like theory of strong interactions appear in biological
length scales [K1] so that also strong gravity would appear in these length scales.

The above approximate construction has certain ad hoc character. The dependence of gtt on r
can be however constrained by requiring 1+1+2 of Einstein tensor such form Gαβi having the form

Λig
αβ
i , = 1, 2 and has a vanishing divergence. As a result one obtains a differential equation for

the gravitational potential Φgr.
The differential equation for Gtt = Λ1g

tt is trivially satisfied due to time translational invari-
ance. The integration of the differential equation for Grr gives at the first step

Grr =
C

ggrrgtt
≡ − C

AB
,

gtt = B , grr = −A . (4.20)

The expressions for Grr and other components of Einstein tensor [K9] are

http://tinyurl.com/y9e22rr6
http://tinyurl.com/ycr66cae
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Grr =
1

A2
(−∂rB

Br
+

(A− 1)

r2
) ,

Gθθ =
1

r2
[− ∂

2
rB

2BA
+

1

2Ar
(
∂rA

A
− ∂rB

B
)

+
∂rB

4AB
(
∂rA

A
+
∂rB

B
] ,

Gtt =
1

AB
(−∂rA

Ar
+

(1−A)

r2
) . (4.21)

The above equation for Grr gives the differential equation

2
dB

du
+
CA

B
=

(A− 1)

u
, u = r2 . (4.22)

If gravitational potential 2Φgr = B − 1 is given one can solve A − 1 from this equation purely
algebraically and obtains spherically symmetric metric.

For the S3 (k = 1) and H3 (k = −1) metric one has

A− 1 =
1

1− kv
− 1 =

kv

1− kv
, v =

u

R2
.

One obtains

dB

dv
+
CR2

2B
(1 + kv) =

k

1− kv
. (4.23)

Near originkvu ' 0 holds true in the first approximation. This gives the approximate expression

B = 1 +B1log(
B +B1

1 +B1
) +

r2

R2
, B1 =

CR2k

2
. (4.24)

Apart from the slowly varying logarithmic term gtt = B is of the same form as Newtonian approx-
imation would predict. Note that the result is same for both k = 1 and k = −1. Near r = R the
right-hand side diverges for k = 1 and implies logarithmic behavior

B ' B0 −
k

2
log(

1− kv
1− kv0

) . (4.25)

For S3 the metric therefore develops Euclidian signature. For k = −1 the gtt becomes very large
for large values of r so that the imbeddability to M4 × CP2 eventually fails. The results suggests
that for both S3 and H3 metric expansion is necessary.

5. Constant deformation does cannot give a decomposition of icosahedron to 20 regular tetra-
hedrons

At the first glimpse the most attractive option from TGD point of view is k = 1 + δ, where δ is
constant in the entire region but one must demonstrate that for a suitable choice of the value of δ
the lengths of radial and surface geodesics are identical. As shown in Appendix C, it is possible to
express the condition fixing the angular distance ∆φ between neighboring vertices of icosahedron
and the equality s = k of the radial and surface edge lengths in terms of elementary functions.
It however turns out that the only solution to the conditions is k = ∞. The interpretation is
following. As k giving the length of the radial edge increases, also the length of the surface edge
increases and does it so fast that infinite value of k is required to obtain equality.

One however obtains an infinite faily of deformations for which k(r) is not constant. In TGD
framework k satisfies the differential equations deduced in Appendix B. As a special case one
obtains deformations transforming piece of E3 to a piece of S3.
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4.2.4 Cosmic honeycombs?

The deformed metric still possesses the crucial SO(3) symmetry. Translational symmetry is lost
but the loss can be located near the center of inside each icosahedron. Icosahedral Penrose tiling
must be constructed by gluing together disjoint 3-surfaces along the faces of the icosahedra. Also
intersections of icosahedra and therefore also tetrahedrons must be allowed. Since the correction
to the radial distances comes from the region near the center of the icosahedron, the construction
of icosahedral Penrose tiling for E3 option proceeds just as it does usually.

For light-cone boundary option the basic icosahedron is replaced by the 2-D outer boundary of
solid icosahedron expanding with light velocity in M4. In 2-D case a simple analogy would be the
replacement of triangle with the boundary of expanding triangle: on just draws the center point
of triangle so that one obtains cone with triangular cross section. The expanding icosahedra start
expansion simultaneously in t = 0 hyperplane. At t = t0 some of them meet along common face
and some of them start to intersect already earlier. After this the resulting state would be a fusion
of the icosahedra to 3-D Penrose tiling which do not expand anymore.

A possible cosmological application would be an explanation for the honeycomb structure in
scales of 108 light years. Galaxies seem to be concentrated on approximately spherical surfaces of
about this radius known as cosmic voids [E1]. One can imagine three options depending on whether
one assigns to the local cosmology sub-critical, critical, or over-critical mass density in these scales
(this is of course the GRT based interpretation). If one accepts the TGD based interpretation
based on the modification of Einstein equations discussed in Appendix A, the cosmic voids would
be genuine vacua in good approximation.

TGD allows also the option for which these voids carry Kähler energy having interpretation
as dark energy. I have indeed proposed that the magnetic energy of Kähler magnetic flux tubes
could be identified as dark energy. What makes the situation difficult is that both vacuum and
non-vacuum options can give rise to accelerated cosmic expansion so that for vacuum option no
dark energy would be needed. Note also that for critical and sub-critical vacuum option non-trivial
long range gauge fields - in particular electromagnetic fields - are present in the vacuum. This is
somewhat frustrating: I had already thought that the issue of dark energy is finally resolved in
TGD framework!

All these honeycomb like structures could be realized in TGD by gluing together pieces of
H3, E3 or S3.

1. For TGD inspired interpretation these cosmologies are vacua and therefore also the voids
identifiable as pieces of these cosmologies. The discontinuities of the normal component of
metric gnn at 3-D gluing regions would give rise to surface mass densities providing idealiza-
tion for the mass carried by galaxies (Einstein tensor involves derivatives of metric).

2. For the standard interpretation these cosmologies carry a mass density perhaps identifiable
as dark energy density besides the mass densities related to the discontinuities of gnn at the
facets at which gluing takes place.

3. The earlier TGD based interpretation would be that the small deformations of the cosmol-
ogy manifested as particles would give rise to average energy momentum tensor satisfying
Einstein’s equations.

In TGD framework these options differ from each other only in that a = constant hyperboloid
is deformed in different manner in CP2 directions.

1. There are infinite number of hyperbolic tessellations. If one requires interpretation in terms of
Platonic solids there are only a finite number of tessellations (honeycoms) given in Schöndflies
notation by (6, 3, 3), (5, 3, 4), (6, 3, 4), (4, 4, 3), (4, 3, 5), (3, 5, 3), (5, 3, 5), (6, 3, 5). Also icosa-
hedral and dodecahedral honeycombs ( (3, 5, 3), (5, 3, 3) and (5, 3, 4)) are present. Hyperbolic
cosmologies are sub-critical and cosmic time evolution is not constrained by the embedding
since CP2 projection is 1-dimensional.

2. 3-D icosahdedral Penrose tiling or icosahedral QCin flat E3 (by CMB data cosmology is flat
in good approximation in large enough scales but is 108 light years large enough scale?). CP2
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projection is 2-D and time evolution which completely fixed apart from a parameter charac-
terizing its finite duration before singularity, which in TGD framework as interpretation as
a blackhole like space-time region having Euclidian signature of the induced metric.

3. Over-critical local cosmology and gluing together in similar manner hemi-3-spheres along
their 2-D equators giving rise to 600-cells consisting of tetrahedrons. Maybe tetrahedron is
too simple an object to serve as as the basic unit of the cosmic honeycomb. Or perhaps a
counterpart of icosahedral Penrose tiling could be obtained. Also now time duration fixed
completely about from its finite duration before singularity.

It is somewhat frustrating to find, that it is difficult to distinguish experimentally between
GRT in which Einstein’s equations with cosmological constant characterizing genuine density of
matter assignable to the vacuum expectation values of inflaton type fields on one hand, and Einstein
equations introducing cosmological constant as purely gravitational parameter. In TGD framework
even more general modifications are possible and treat cosmological “constants” as parameters
characterizing vacua.

4.2.5 Does the replacement E3 → S3 make sense quantum mechanically?

A possible quantum mechanical sensibility test for the S3 deformation is based on the quantum
motion of a test particle in S3 metric replacing free motion in E3 metric when one has two-sheeted
representation of S3. If only a piece of S3 is considered, the situation is more complex since the
solutions must be restricted to a piece of S3.

The first thing to notice is that S3 geometry requires mass density which is constant being
proportional to the curvature scalar R3. The energy density is given by T tt = κGtt = −κgttR3/2.
R3 is negative since the sign of 3-metric is negative so that positive energy density is obtained.
For hyperbolic stationary case the energy density would be negative, and this might exclude this
option unless one can assign this energy density with negative energy parts of zero energy states.
Note that in cosmology the situation changes since Rtt is non-vanishing. This kind of distinction
between positive and negative energy states at space-time level would be rather dramatic.

One could assign constant mass energy density to large enough atomic nuclei, to condensed
matter systems involving many enough atoms such as the water molecule clusters to be discussed
later, and also to gases, liquids, and solids. This is natural if the length scale resolution of the
description does not allow to distinguish the basic building blocks. These criteria are not satisfied
for systems such as single atom.

1. The situation is SO(4) = SO(3)×SO(3) symmetric and the WCW is isomorphic with WCW
SO(3) of a rigid body. One can also consider the possibility of rigid body with half-odd
integer angular momentum made possible if one replaces SO(3) with its covering group in
both factors of SO(4). For SO(3) only integer values J = 0, 1, 2, ... are allowed whereas SU(2)
allows half integer values J = 0, 1/2, 1, .... An interesting question is whether one should allow
purely geometric half-odd integer spin which does not reduce to ordinary half-odd integer
spin. The so called orientation entanglement relation (see http://tinyurl.com/6lqfs57)
allows to visualize geometrically the fact that 2π rotation is not homotopically trivial whereas
4π rotation is. This might justify the allowance of also half integer values of J .

2. The transition from free linear motion to free rotational motion means that momentum eigen-
states with 3-momentum pi are replaced with angular momentum eigenstates with angular
momentum J and two spin components K,L corresponding to angular momentum projec-
tions for the two commuting factors of SO(4), which both vary in the range −J,−J+1, ..., J ,
and therefore have 2J + 1 values. The Laplace operator replacing momentum square is just
angular momentum squared and has eigenvalues J(J + 1) with degeneracy (2J + 1)2.

3. The states correspond to unitary irreducible representations of SO(4) = SO(3) × SO(3) or
its covering group Spin(4) = SU(2) × SU(2) in the group algebra of SO(3) or of its cov-
ering SU(2). By general theorems the group algebra of any compact group decomposes to
a direct sum of unitary irreducible representations contains all representations such that n-
dimensional representation occurs n times. This can be understood as decomposition of the

http://tinyurl.com/6lqfs57
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representation of group element g to a direct sum of n×n matrices belonging to various irre-
ducible representations. For SU(2)×SU(2) one obtains all angular momenta J = 0, 1/2, 1, ...
with (2J + 1)2-fold degeneracy. If both both half-odd integer and integer values of J are al-
lowed, the degenerates are given by n2 = (2J + 1)2 = 1, 22, 32, 42 and same as for hydrogen
atom.

4. In non-relativistic approximation for energy as E −m ≡ p2/2m, with E → i∂t and pi → iDi

and pip
i → gijDiDj one obtains Schrödinger equation for a test particle as

i
∂Psi

∂t
= EΨ =

1

2mR2
∇2
S3Ψ , ∇2

S3 = DiDi (4.26)

The energies are given by EJ = J(J+1)/I, I = 2mR2, and identical to those of a spherically
symmetric rigid body with moment of inertia I = mR2. The scale of energy is given by the
radius of S3. In atomic length scale the estimate for the radius would be size of the atom.
This would give energy, which is of the same order of magnitude as zero point kinetic energy
of free particle in same volume so that there are no obvious contradictions with existing
physics.

5. Could S3 geometry for free nucleons serve as an alternative for nuclear shell model based on
harmonic oscillator Hamiltonian? In shell model single particle energies are En = nE0 and
such that even/odd integer valued angular momenta J ≤ n correspond to given n (SU(3)
dynamical symmetry). The harmonic oscillator model predicts correctly the nuclear magic
numbers as 2, 8, 20, 28, 50, 82, 126, 184. For S3 option the energies would be concentrated
on shells with EJ = J(J + 1)E0. Now magic numbers would correspond to full shells with
(2J + 1)2 = n2 states on each just as in the case of atoms in the first approximation. The
magic numbers would be 2, 10, 28, 60, 92, .. and not consistent with the experimental ones.
Harmonic oscillator Hamiltonian in S3 geometry however makes sense and predicts splittings
of the harmonic multiplets.

6. What happens for free motion if only a finite piece of S3 is allowed? The simplest situation
corresponds to r = sin(α) = R1 < R. The normal derivatives of wave functions should
vanish at r = R1 in order to have conservation of probability. The wave functions are matrix
elements DJ,K,L(α, θ, φ) and can be expressed as products of wave functions assignable to
the Euler angles α, θ, φ. For α the wave function RJ,K,L(α) is the S3 analog of Legendre
polynomial Pl,m(θ). The simplest manner to satisfy the boundary conditions is to assume
that only those partial waves in S3 satisfying dRJ,K,L(α)/dα = 0 for α = arcsin(R1/R) are
allowed. This leads to a quantization of R1/R and selection of only some values of (J,K,L).

If both both half-odd integer and integer values of J are allowed the degenerates are given by
n = (2J+1) = 1, 22, 32, ... and are same as for hydrogen atom. For spherically symmetric harmonic
oscillator appearing in the model of atomic nucleus only even or odd angular momenta are allowed:
in this case SU(3) is the dynamical symmetry which happens to be isometry group of CP2.

1. The exceptionally large degeneracy of energy eigenstates in Coulomb and harmonic oscillator
potentials is due to a dynamical symmetry. Besides angular momentum also so called Runge-
Lenz vector is conserved in Coulomb potential (so called generalized conserved Runge-Lenz
vector can be defined for all central forces). In fact, the motion in Coulomb potential is group
theoretically equivalent (see http://tinyurl.com/29qknm9) to the free motion of a particle
in S3! The conserved Runge-Lenz vector is given by A = p × L + mke, where e is radial
unit vector at the orbit orthogonal to angular momentum L and p is 3-momentum. Note
that A ·L = 0 holds true. By dividing this with conserved quantity 1/

√
2mE one obtains an

operator D with dimensions of angular momentum. The ordinary angular momentum L and
D generate SO(4) Lie algebra and the first Casimir operator C1 = L2 +D2 for this algebra
equals to mk2/|E|. E ∝ 1/n2 implies that eigenvalues of S3 Laplacian are proportional to
C1− Id and thus proportional to n2− 1 = (2J + 1)2− 1. The eigenvalues of C2 are given by
n2 with n = 2J+1, J = 0, 1/2, 1, .... As already noticed, second Casimir operator C1 = L ·D
vanishes for the orbits in Coulomb potential.

http://tinyurl.com/29qknm9
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2. Could the reduction of the motion Coulomb potential to free particle motion in S3 be more
than a mere mathematical curiocity? The relationship C1 = −mk2/HCoul between C1 and
Hamiltonian HCoul = ~2∇2/2m+ V (r) transforms to

HS3 =
~2J(J + 1)

2mR2
=

~2

2mR2
(n2 − 1) =

~2

2mR2
(− mk2

HCoul
− 1) . (4.27)

The relationship looks rather artificial and one can argue that the connection is purely group
theoretical and cannot have a genuine geometric meaning.

3. In the case of atom S3 geometry is not well-motivated. One can still look what happens if
one replaces E3 geometry with S3 geometry. Coulomb potential has a well-defined S3 coun-
terpart. The straightforward generalization of Coulomb potential energy to V (r) = −k/r,
r = sin(α)) is well-defined. It however replaces the singularity at origin with singularities at
North and South poles of S3 unless one considers only a piece of S3. Physically one would
have two-sheeted structure with nucleus at both North and South poles. SO(4) symmetry
is reduced to SO(3) symmetry, and is expected to induce the splitting of the energies of
states with different values of J but same value of n. Near r = 0 the metric is in a good
approximation flat so that for states with small n one does not expect large deviations from
E3 and perturbation theoretical treatment using grr = 1/(1− (r/R)2) ' 1+ r

R
2 should make

sense. For states of atom with rn = (a0/Z
2)n2 ≤≤ R, a0 = ~/αme ' .53 × 10−10 m, this

approximation should be good. For the values of n > Z2(R/a0) the deviations from E3

metric are certainly since the first node of the E3 radial wave function would be at radius
r > R.

In principle the effects on the energy eigenvalues of hydrogen atom could be used to derive
a lower bound on the value of R if hydrogen atom space-time sheet correspond locally to S3

(which it very probably does not!). The splitting of states with same n but different values of
j can be compared to the splitting predicted by Dirac equation (see http://tinyurl.com/

387yfge) and given exactly by the Sommerfeld formula. The approximate expression for the
relativistic splitting reads as

∆En,j
En

' α2

n2
× n

j + 1
2 −

3
4

.

This splitting can be compared with the order of magnitude estimate for the correction
coming from S3 geometry in the lowest order approximation obtained as grr = 1− (r/R)2 in
the Laplacian:

∆En,l
En

= −〈 r
R

)2 Tr
En
〉n,l ,

〈( r
R

)2Tr〉n,l = 〈~
2∂2
r

2me
〉n,l = −〈( r

R
)2

[
En −

~2l(l + 1)

2mer2
− V (r)

]
〉n,l

−〈
( rR )2Tr

En
〉n,l = −(

an
R

)2

[
〈ρ2
n〉n,l +

l(l + 1)

n2
+

2π

α2
〈ρn〉n,l

]
ρn =

r

an
, an = n2a0 , a0 =

α~
me

, En =
α

2an
. (4.28)

The expectation values of ρn and ρn are of order unity since ρn appears as a natural variable
in radial wave functions. The condition R > n3a0/α guarantees that the splittings are smaller
than given by the Sommerfeld formula. Already for n = 1 this would give R > 137a0, which
is of order.5 nm.

http://tinyurl.com/387yfge
http://tinyurl.com/387yfge
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4.3 Appendix A: Does TGD Force A Modification Of Einstein Equa-
tions?

How Einstein’s equations and General Relativity in long length scales emerges from TGD has been
a long-standing interpretational problem of TGD, whose resolution came from the realization that
GRT is only an effective theory obtained by endowing M4 with effective metric.

1. The replacement of superposition of fields with superposition of their effects means replacing
superposition of fields with the set-theoretic union of space-time surfaces. Particle experiences
sum of the effects caused by the classical fields at the space-time sheets.

2. This is true also for the classical gravitational field defined by the deviation from flat
Minkowski metric instandard M4 coordinates for the space-time sheets. One can define
effective metric as sum of M4 metric and deviations. This effective metric would correspond
to that of General Relativity. This resolves long standing issues relating to the interpretation
of TGD.

3. Einstein’s equations could hold true for the effective metric. They are motivated by the
underlying Poincare invariance which cannot be realized as global conservation laws for the
effective metric. The conjecture vanishing of divergence of Kähler energy momentum tensor
can be seen as the microscopic justification for the claim that Einstein’s equations hold true
for the effective space-time.

4. The breaking of Poincare invariance could have interpretation as effective breaking in zero
energy ontology (ZEO), in which various conserved charges are length dependent and defined
separately for each causal diamond (CD).

Before this breakthrough the hope was that Einstein’s equations or their generalizations might
be true for preferred extremals. The discovery of a general ansatz for preferred extremals [K10, K2]
meant a decisive breakthrough in TGD. One of the implications is that Kähler energy momentum
tensor must have a vanishing divergence for the preferred extremals. Einstein-Maxwell equations
with cosmological term given by

Tαβ = κGαβ + Λgαβ . (4.29)

guarantee this automatically but could be too strong condition in TGD framework. In TGD frame-
work Tαα = 0 implies that curvature scalar is constant and vanishing for vanishing cosmological
constant.

1. If GRT is only an effective theory, the space-time sheets could even obey scale free and
conformally invariant gravitation in the sense that curvature scalar vanishes: microscopic
gravitational physics would be extremely simple and complexities of GRT would be due to
the many-sheetedness.

2. If one is ready to believe that single space-time sheet allows modelling of astrophysical and
cosmological systems, the condition of Eq. 4.29 is un-necessarily strong. One ends up with
problems also with Robertson-Walker cosmologies realized as vacuum extremals if one regards
them as limiting cases of preferred extremals.

A more general condition guaranteing vanishing divergence for energy momentum tensor leads
to an appearance of several parameters analogous to cosmological constant but not being
genuine constants. Even this generalization might be un-necessarily strong and minimalist
could argue that just the vanishing of the divergence of Kähler energy momentum tensor
might serve as the TGD counterpart of Einstein’s equations and Equivalence Principle.

As noticed, Einstein’s equations need not hold true for space-time sheets. This does not however
exclude the possibility that something analogous is true also at microscopic level. This motivates
the consideration of the possibility of several position dependendent cosmological “constants”.
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4.3.1 Does TGD allow several cosmological “constants” ?

The introduction of cosmological constant need not be the only solution of the vanishing of the
covariant divergence of TK . If the preferred extremals have special symmetries, one can satisfy the
condition by replacing cosmological term Λgαβ with a more general term:

Tαβ = κGαβ +
∑
i

ΛiP
αβ
i . (4.30)

Here Pi are identified as projectors to orthogonal sub-spaces of the tangent space of the space-
time surface. The distributions of these sub-spaces are assumed to be integrable and define di-
dimensional sub-manifolds of space-time surface with

∑
di = 4. The maximally symmetric situa-

tion corresponds to the canonical embedding of M4 with di = 1.
The condition that energy momentum tensor is divergenceless is satisfied if one has

Dβ(ΛiP
αβ
i ) = 0 .

Λi need not be constant functions anymore so that cosmological constant is replaced by two or
more - presumably slowly varying - cosmological “constants”. For Λi = Λ one obtains just ordinary
cosmological constant which must be genuine constant.

Two remarks are in order.

1. This generalization of the notion of cosmological does not make sense in GRT framework,
where Einstein equations are deduced from a variational principle but do so in TGD frame-
work were they characterize preferred extremals and are deduced from the vanishing of co-
variant divergences of Kähler-Maxwell energy momentum tensor. In TGD framework the
acceptance of two cosmological “constants” is just acceptance of TGD and forcing only sin-
gle one would be too strong ad hoc assumption. In GRT situation would be completely
opposite.

2. It should be also noticed that the proposed modification is not physically equivalent to the
assumption that cosmological constant characterizes the energy momentum tensor assignable
to vacuum expectation values of Higgs like fields (inflaton field). In this case one would
have ordinary Einstein equations without cosmological term but energy momentum tensor
containing the additional terms:

κGαβ = Tαβ −
∑
i

ΛiP
αβ
i . (4.31)

The physical interpretation of these two options is totally different.

4.3.2 Preferred extremals suggest a generalization of Einstein’s equations

There is actually support for the generalization of Einstein’s equations in TGD framework.

1. The preferred extremals possessing Hamilton-Jacobi structure in Minkowskian regions indeed
have the needed 2+2-decomposition of the tangent space to 2 longitudinal and 2 transversal
degrees of freedom. The distributions of these tangent spaces are integrable. Physically longi-
tudinal and transversal degrees of freedom correspond to light-like momentumandorthogonal
polarization for the preferred extremals. Also number theoretical vision leads to similar
2+2 decomposition of the quaternionic tangent space. Similar 2+2 decomposition occurs for
string like objects. In Euclidian regions Hamilton-Jacobi structure is replaced with complex
structure in 4-D and also in this case this kind of decomposition is possible but need not
be so unique. The standard Eguchi-Hanson complex coordinates for CP2 define this kind of
decomposition.

Therefore it would be very natural to assume that the energy momentum tensor has the
decomposition given by Eq. 4.33. This would quite generally suggest 2+2 decomposition.
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4.3.3 Also vacuum extremals suggest a generalization of Einstein’s equations

The vacuum extremals of Kähler action are expected to be very important piece of TGD since
their small deformations are expected to give rise to physical non-vacuum extremals. These
extremals have vanishing induced Kähler field but they are not vacua in gravitational sense.
One can hope that at least some class of these vacuum extremals could allow a realization
as limits of non-vacuum preferred extremals and would therefore satisfy a generalization of
Einstein’s vacuum equations.

One cannot be make these solution gravitational vacua by introducing cosmological constant
so that one would have

κGαβ + Λgαβ = 0 . (4.32)

One can however consider more general equations

κGαβ = −
∑
i

ΛiP
αβ
i ,

Dβ(ΛiP
αβ
i ) = 0 . (4.33)

Especially interesting vacuum extremals are defined by the embeddings of Robertson-Walker
cosmology [K8].

1. Robertson-Walker cosmologies for sub-critical, critical, and over-critical mass density corre-
spond to 3-space, which is constant curvature space. For negative curvature one has hy-
perbolic space H3, for vanishing curvature Euclidian 3-space E3, and for positive curvature
3-sphere S3. The metric in these three cases is given by

ds2 = gaada
2 − a2(

dr2

1 + kr2
+ r2dΩ2) , (4.34)

where k = 1,−, 0, 1 corresponds to H3, E3, S3.

2. All these cosmologies are imbeddable to M4 × CP2.

(a) For H3 signature the embedding is obtained by assuming almost arbitrary 1-D CP2

projection with CP2 coordinates arbitrary functions of cosmic time a defined by M4

light-cone proper time: sk = fk(a). a = constant surfaces correspond to hyperboloids
of future light-cone M4

+ ⊂M4.

(b) For E3 and S3 one must assume that CP2 projection is 2-dimensional. The simplest
option corresponds to a CP2 projection which is homologically trivial geodesic sphere
S2 ⊂ CP2 with vanishing induced Kähler form. Denoting by (Θ,Φ) the coordinates of
S2 ⊂ CP2, the embedding must be of form

sin(Θ) =
a

τ
, Φ = f(r) . (4.35)

The dependence of Θ on cosmic time is dicrated by the condition that the contribution
of sin2(Θ)(∂rΦ)2) is proportional to a2. f(r) is fixed from the condition that one obtains
k = 0 or k = −1 meaning that hyperbolic metric of 3-space transforms to Eucldian or
spherical one by deformation in CP2 directions. The resulting cosmologies have only
their duration τ as a free parameter [K8].

Euclidian and spherical cosmologies end up with singularity as the induced metric trans-
forms to Euclidian signature. In TGD framework, where blackholes like objects corre-
sponds to space-time regions with Euclidian signature, the interpretation would be in
terms of blackhole collapse. What is interesting is that the “pressure” in Einstein tensor
in negative so that one obtains accelerated cosmic expansion for critical mass density.
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3. For these cosmologies 1+3 decomposition of the tangent space looks more natural than 2+2
decomposition. 1+3 decomposition corresponds to the decomposition of Einstein’s tensor to
G = ρP1 − pP3, where P1 ↔ gaa projects to the direction of cosmic time a and P3 ↔ gij3
to 3-space a = constant. It is easy to see that pgij3 has vanishing divergence and Einstein’s
equations implies that also ρP1 does so. This does not conform with the idea that Hamilton-
Jacobi structure dictates the decomposition, which would therefore be 2+2. If this is really
true, then on expects a second family of solutions for which one has 1+3 decomposition of the
tangent space. Maybe the conjectured quaternionic space-time surfaces could correspond to
this family of preferred extremals. The earlier conjecture has been that preferred extremals
with Hamilton-Jacobi structure are equivalent with quaternionic ones.

Note that this kind of decomposition takes place for the deformation of E3 or equivalently M4

discussed above. One must deduce the conditions under which the divergence free decomposition
holds true. This must pose a differential equation on k(r).

One can also ask what the situation is for Schwartschild metric and Reissner-Nodström metric.
For Schwartschild metric Einstein tensor vanishes so that Λi = 0 holds true trivially. A little
calculation shows that for Reissner-Nordström metric Einstein tensor has the decomposition E2g1−
E2g2, where g1 and g2 are the projectors to (t, r) plane and (θ, φ) sphere. E2 = Q2/r4 implies

that the conditions Dβ(ΛiP
αβ
i ) = 0 cannot be satisfied.

4.3.4 What could the modification of Einstein’s equations mean from the point of
view of dark energy?

The modification of Einstein’s equations has highly non-trivial implications concerning the notion
of dark energy. In GRT based interpretation cosmological constant does not correspond to energy
density whereas in the models assigning it to vacuum expectations of Higgs like inflaton fields a
genuine energy density is in question: this allows the variation of cosmological constant with time
whereas in Einstein’s theory Λ would be a constant of Nature subject only to coupling constant
evolution. In TGD framework G, Λ would depend on space-time sheet and the set of cosmological
“constants” Λi would depend on position for a given space-time sheet.

One must of course remember that in TGD vacuum extremals can be only limiting situations.
The real space-time sheets are definitely not vacuum extremals. For instance, elementary particles
correspond to space-time regions with 4-D CP2 projection and Euclidian signature of the induced
metric so that their nearby Minkowskian environment has 3-D CP2 projection and is also non-
vacuum extremal. Same applies to cosmic strings, which in the ideal situation have 2-D CP2

projection which corresponds to homologically non-trivial 2-surfaces in CP2.The evolution of cosmic
strings would mean gradual thickening of their originally infinitely thin E3 projection and the
remnants of cosmic strings would explain also the magnetic fields filling the Universe.

It is not easy to find any killer argument against the proposed modification of Einstein’s equa-
tions.

1. What happens to Equivalence Principle if the modification of Einstein’s equations is ac-
cepted? The basic manifestation of Equivalence Principle is as the geodesic motion of test
particles. In Newtonian framework the analog of this is the cancellation of the dependence
on the mass of the particles due to the identical values of inertial and gravitational masses.
In this respect nothing changes since the motion is determined completely by the geometry.
The independence of the effects of geometry on test particle on what one assumes about the
energetics is analogous to the disappearance of inertial and rest masses from the equation of
motion for Newtonian test particle.

Also the effects caused by the background geometry on particles - say redshift or spectrum
of microwave temperature fluctuations of microwave background - are same irrespective of
the energetic interpretation.

2. Both vacuum and non-vacuum options can give rise to accelerated cosmic expansion so that
for vacuum option no dark energy would be needed. Does this mean that dark energy
thought to be responsible for the accelerated cosmic expansion or it is pure vacuum fiction?
And could one explain the velocity spectrum of distant stars rotating around galactic nuclei
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by assuming that galaxies are like pearls in necklace, which is vacuum flux tube instead of
Kähler magnetically charged flux tube carrying huge energy density characterized by string
tension defined by CP2 scale? Note also that for critical and sub-critical vacuum option
non-trivial long range gauge fields - in particular electromagnetic fields - are present in the
vacuum. The situation is admittedly somewhat frustrating: I had already thought that the
issue of dark energy is finally resolved in TGD framework!

Could one see vacuum extremals and non-vacuum extremals - not as options between which to
choose - but descriptions applying in different length scales. In zero energy ontology this might be
possible.

1. The original hypothesis was that the small deformations of vacuum extremals, which micro-
scopically correspond to the generation of particles, have average energy momentum tensor
given by the Einstein tensor. If this is the case, vacuum extremals would carry information
about matter topologically condensed at them coded to their own geometry. The energy
momentum current of the topologically condensed matter represents simplest information of
this kind. Could the energy momentum tensor defined by Einstein tensor of vacuum extremal
be identified with the energy momentum tensor of the topologically condensed matter? More
generally, could the sum of Kähler energy momentum tensor and of the terms corresponding
to projection operators representing topologically condensed matter correspond to Einstein
tensor in the case of non-vacuum extremals? If so, the deviation from Einstein’s equations
would have quite generally interpretation in terms of topologically condensed matter. Topo-
logically condensed matter would replace the contribution of vacuum expectations of inflaton
fields.

2. Could the vanishing of the actual energy momentum current for vacuum extremals be in-
terpreted as saying that the causal diamonds assignable to the zero energy states are small
in the scale of vacuum extremal so that the topologically condensed matter has interpreta-
tion as quantum fluctuations? Vacuum extremal would however carry information about the
topologically condensed matter (vacuum fluctuations) and make it manifest as effects like
redshift, accelerated expansion, and temperature fluctuations of CMB.

One must be however always ready to invent a counter argument.

1. The vacuum degeneracy of Kähler action is enormous. Any space-time surface with CP2

projection belonging to a Lagrangian sub-manifold of CP2 has vanishing induced Kähler
form and is therefore vacuum extremal. Symplectic transformations of CP2 give rise to new
Lagrangian manifolds and diffeomorphisms of M4 give rise to new vacuum extremals. Is
it really possible do identify a canonical decomposition of Einstein tensor for these vacuum
extremals to at least two non-vanishing pieces characterized by cosmological “constants” Λi?

2. One could circumvent the objection by noticing that there is no need for every vacuume
extremal to define a limit of a preferred extremal.

3. The only possible hope about the decomposition is given by the two-dimensional character
of CP2 projection. The inverse image of a given point of CP2 belonging to the space-time
surface is in the generic case a 2-D sub-manifold of the space-time surface and as the point
of CP2 varies one obtains a slicing of the space-time surface by these 2-surfaces. Could the
Einstein tensor have a representation G = Λ1P1 + Λ2P2 as a sum of contributions associated
with the tangent space and space-time complement?

4.4 Appendix B: Conditions On Function K(R) From The Generaliza-
tion Of Einstein’s Equations For Vacuum Extremals

In this Appendix the conditions on the function k(r) guaranteeing that the metric ds2 = dt2 −
k2dr2−r2dΩ2 is imbeddable to M4×CP2 as vacuum extremal obtained by deforming t = constant
hyper-surface E3 of M4 in CP2 direction are discussed. The vacuum extremal is taken to be
the simplest possible one having CP2 projection to a geodesic circle S1 of CP2 having angular
coordinate Φ as coordinate so that one has Φ = f(r) and k2 = 1 +R2(df/dr)2.
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4.4.1 Differential equation for k(r) from generalized Einstein equations

As shown, the Einstein tensor G of the solution of the metric ds2 = dt1 − k2dr2 − r2dΩ2 is in
general vanishing and this is not consistent with the vacuum extremal property of the embedding
meaning that the induced Kähler field vanishes. These vacuum extremals are also in conflict
with the assumption that preferred extremals (4-surfaces) at the limit of vacuum satisfy Einstein-
Maxwell equations with cosmological term satisfying TK = κG+Λg. This condition is however un-
necessarily strong and not actually prediction of TGD. The only condition on preferred extremals
in TGD is that TK has vanishing divergence and this condition can be satisfied by assuming only

Tαβ = κGαβ +
∑
i

ΛiP
αβ
i ,

Dβ(ΛiP
αβ
i ) = 0 , κ =

1

8πG
. (4.36)

Λi need not to be constant functions anymore so that cosmological constant is replaced by several
- presumably slowly varying - cosmological “constants”.

In the recent case one is interested on having such k(r) that one has vacuum extremal with
1+1+2 decomposition satisfying

κGαβ = −
∑

i=1,2,3

ΛiP
αβ
i . (4.37)

Now one would have three terms Pi in the decomposition which is 1 + 1 + 2. corresponding to
coordinate lines for t and r and spheres (θ, φ). In the following the differential equations for k(r)
guaranteeing that ΛiP

i has a vanishing divergence, are deduced. These equations can be integrated
and give rise to a family of metrics.

The first thing to notice is that if Λ1P1 and Λ2P2 have vanishing divergences then also Λ3P3

does so since G has vanishing divergences and TK = 0 holds true. There it is enough to show that
(Gtt, 0, 0, 0) = (−gttR3/2, 0, 0, 0) expressible as Λ1g

tt and (0, Grr, 0, 0) = (0, Rrr − grrR3/2, 0, 0
have vanishing divergence.

For Gtt = −gttR/2 the divergence vanishes trivially since it involves only ordinary time deriva-
tive. For Grr = Rrr − grrR/2 the condition is non-trivial and gives rise to a differential equation
giving as solutions a family of functions k(r). The vanishing of covariant divergence for Λ2P2 ↔ Grr

gives rise to the condition

∂rG
rr + 2{ r

r r
}Grr = 0 . (4.38)

This equation can be integrated

Grr =
K

k2(r)
= −Λ2

κ
grr , (4.39)

where Λ2 is 1-D “cosmological constant” with dimensions of length to fourth is k is taken to be
dimensionless so that r has dimension of length.

Writing the expression of Grr explicitly one can cast this equation to the differential equations

r2Grr =
1

k3

dk

dlog(r)
+
k2 − 1

k2
=

Λ

κ
r2 . (4.40)

This differential equation is non-linear and non-homogenous and can be written also in the form

dk

dlog(r)
+ k(k2 − 1) =

Λ

κ
k3r2 . (4.41)

The first thing to notice is that the equation allows k = constant as a solution only if one has
k = 1. Hence k = 1 + ε solution is not allowed as a gravitational vacuum solution in TGD sense.
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4.4.2 Spherical and hyperbolic metrics satisfy modified Einstein’s equations

For Λ2 = 0 it can be however integrated. In this case on obtains

∫ k

k0

1

k(k2 − 1)
dk =

∫ u

0

du = log(
r

R
) . (4.42)

This gives

k2 =
1

1− ( rR )2
. (4.43)

This is nothing but the metric of S3 with radius R. As a matter fact, one obtains only one half
of the sphere and by gluing the two halves along equator one would obtain two sheeted 4-surface
defining the entire 3-sphere.

Also hyperbolic metric with k = 1/(1 + (r/R)2) satisfies the generalized Einstein’s equations
as is easy to see by a direct calculation.

Could k(r) ansatz allow other than H3, E3, andS3 for Robertson-Walker cosmology? The
deviation of k(r) from the form

k2(r) =
1

(1 + ε(r/R)2
, ε = ±1, 0

means breaking of SO(3, 1), SO(4), or SO3 × T 3 symmetry. Hence the 1+3 decomposition is
replaced with 1+1+2 decomposition so that one obtains two conditions for k(r) corresponding
to Gaa and Grr. Note that the condition sin(Θ) = a/τ must be satisfied unless the situation is
hyperbolic. This suggests that only these 3 solutions are possible.

4.4.3 Approximate solutions for Λ1 6= 0

For non-vanishing values of Λ≡Λ one obtains candidates for solutions which one is searching pro-
vided that k(r) approaches rapidly to k(r) = 1. Near the origin Eq. 4.41 reduces to that giving S3

so that the solution looks near the center of the icosahedron. For large values of r it should give
flat metric. If k → 1 or k → 0 the equation reduces in good approximation to

1

k3

dk

dr
=

Λ

κ
r . (4.44)

This can be integrated to give

k2 =
k2

0[
1 + Λ

κ k
2
0(r2 − r2

0)
] . (4.45)

k approaches zero asymptotically so that the result is consistent with the assumption about the
asymptotic behavior. The solution becomes singular at

r2 = r2
0 −

κ

k2
0Λ

. (4.46)

One can get rid of the singularity if one assumes

r2
0 <

κ

k2
0Λ

. (4.47)

With this assumption one can write the solution as
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k =

[
(
r

ra
)2 + 1

]−1/2

,

r2
a =

κ

Λ
, r2

1 = k−2
0 r2

a − r2
0 . (4.48)

The limiting case corresponds to r1 = 0 taking the singularity to origin. This is nothing but H3

metric so that the solutions would look like S3 near origin and like H3 at larger distances. A local
S3 like bump would be in question.

Consider now that ratio of the distance s to the Euclidian distance R and assume that the
metric is non-singular also at origin so that it makes sense to use the approximation holding true
at r → ∞ limit. Assume that R is defined as the radius for which k(R) = 1 holds true. This
condition gives

R

ra
=

√
1− (

r1

ra
)2 . (4.49)

The basic solution dependent parameters are k0 and r0 whereas ra would be analogous to a constant
of Nature in GRT context: in TGD framework also this parameter can be seen as a parameter
characterizing space-time sheet. In any case it is convenient to express everything in terms of k0

and r0. A tedious exercise gives the following formulas for various length ratios:

R

r1
=

√
1− ( r1ra )2

r1
ra

=

√
k2

0

[
1 + (

r0

r1
)2

]
− 1 ≡ X ,

r1

ra
=

√
1− (k0r0ra

)2

k0
,
ra
R

=
k0

X
. (4.50)

The ratio increases exponentially with R/r1.
The goal of the calculation is to deduce the ratio s/R of the deformed distance to Euclidian

distance. One can estimate s(R) =
∫ R

0
k(r)dr by approximating the metric with its asymptotic

form for large values of r. This gives

s

R
=

ra
R
arsinh(

R

r1
) ' k0

X
arsinh(X) , X =

√
k2

0

[
1 + (

r0

r1
)2

]
− 1 . (4.51)

In the recent TGD-based cosmology one has the order of magnitude estimate Λ ∼ κ/a2, a
cosmic time defined by the light-cone proper time. In condensed matter length scale the value of
a would be much smaller than in cosmology. ra would be of order a and r1/ra ∼ 1/k0 would hold
true. One would have r0/r1 ' 0, and R/r1 ∼

√
k2

0 − 1 giving ra/R = (ra/r1)(r1/R) = k0/
√
k2

0 − 1
giving

s

R
=

ra
R
arsinh(

R

r1
) ' k0√

k2
0 − 1

arsinh(
√
k2

0 − 1) ≡ coth(U0)× U0 , k0 = cosh(U0) .(4.52)

Large enough value for k0 gives larges/R. Hence it seems possible to have rather large values of
s/R. This gives also excellent hopes about equal lengths for the edges of icosahedral tetrahedrons.
It should be relatively easy to estimate numerically the length of geodesic edges of the “surface”
edges in the proposed metric. In the approximation k(r) = 1 in the region containing the edges,
the lengths of surfaces edges are just the Euclidian lengths.

The conclusion is that if one accepts the TGD based vision implying a modification of Einstein’s
equations, one indeed can have a situation in which the icosahedral tetrahedra are regular. Whether
this has any interesting physical meaning, remains of course open. Perhaps the only real defense
for this exercise in Riemannian geometry is that it forced to question the näıve assumption that
all preferred extremals satisfy Einstein-Maxwell equations with cosmological term.
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4.5 Appendix C: Explicit Form For The Regular Tetrahedron Property
For K = Constant Option

The generalization of Platonic solids to the deformation of E3 is obtained by replacing their edges
by geodesic lines in the deformed metric. For spherical tetrahedron at unit sphere the distances
between vertices are equal to

√
8/3 ' 1.633. For the irregular tetrahedrons assignable to an

icosahedron the surface edges are much shorter but still by a factor
√

23/(5 +
√

5) ' 1.0515 longer

than the radial edges.
In the following only the case k = 1 + δ is considered so that radial edges have length k if

unit sphere in Minkowski metric is in question. In order to see whether the condition s = k for
the length between the vertices of icosahedron can be satisfied for a suitable choice of δ, one must
calculate the geodesic distance between the vertices. It turns out that k =∞ is the only solution.
The interpretation is following. As k giving the length of the radial edge increases, also the length
of the surface edge increases so fast that the radial edge remains shorter than the surface edge for
all finite values of k. As already found, the condition that solution is vacuum extremal also in
gravitational sense as it is understood in TGD framework allows only k = 1 for constant value of
k.

4.5.1 Equations of geodesic lines for deformed E3

The equations of geodesic line are in general form

d2xk

dt2
+ { k

l m
}dx

l

dt

dxm

dt
.

They can be solved by using angular momentum conservation and energy conservation.

1. Rotational symmetry allows to choose the coordinates so that the geodesic line is in z = 0
plane so that one has θ = π/2. The equations reduce to

d2r
dt2 + { r

φ φ
}(dφdt )2 = 0 ,

d2φ
dt2 + 2{ φ

r φ
}dφdt

dφ
dt = 0 .

This gives

d2r
dt2 = r

k2 (dφdt )2 ,

d2φ

dt2
dφ
dt

= −2
dr
dt

r .

2. The latter equation can be integrated just as in E3 and gives

dφ
dt = ω0( r0r )2 .

r0 = 1 holds true for unit sphere. r0 = 1 is assumed in the following formulas. The
interpretation is in terms of angular momentum conservation.

3. Substituting dφ/dt to the equation for r one obtains

d2r
dt2 =

ω2
0

k2r3 .

Energy conservation becomes explicit by multiplying with dr/dt and integrating to get

(drdt )
2 + K2

r2 = v2
0 +K2 ,

v0 = dr
dt (0) , K = ω0

k .
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This gives

dr
dt = ±v0X ,

X =
√

1 + K2

v20
(1− u2) ,

u = 1
r .

The initial values v0 and ω0 - or rather their ratio- must be fixed from the condition that
the geodesic line connects the neighboring vertices of the icosahedron. This condition boils
down to the condition that the angular distance between the points is same as for ordinary
icosahedron.

4. Also this equation can be integrated. It is convenient to take φ instead of t as the variable
by using dr/dφ = dr/dt× dt/dφ and the expression of dφ/dt in Eq. 2. This gives

∆φ = arccos( Φ
2+Φ ) = ω0

v0

∮ 1

1
1√
X
du ,

Φ = 1+
√

5
2 .∮ 1

1
tells that the integral is between points, which are at the surface of the sphere. The

integral is two times the integral between u = u0 = 1 and umax at which dr/dt = 0 holds
true. By taking u = 1/r as an integration variable one obtains

∆φ = 2k
√
A× I(A, umax) ,

I(A, umax) =
∫ umax

1
1√

1+A(1−u2)
du ,

A = K2

v20
.

∆φ is fixed as the angular distance between neighboring vertices of icosahedron. umax cor-
responds to the vanishing of X, and is given by

umax =

√
A+ 1

A
=

√
1 +

k2v2
0

ω2
0

.

umax increases with k meaning that the geodesic line visits nearer to origin for larger values
of k unless the radial kinetic energy at the initial moment is reduced as compared to the
rotational one. From these condition one can solve that initial values v0 and ω0.

5. The variable change v =
√
A/(1 +A)u allows to express the integral I(A, umax) in terms of

elementary functions:

I(A, umax) =
√

1
1+A

∫ 1√
A/(1+A)

1√
1−v2 dv = 1√

A
(π/2− arcsin(

√
A/(1 +A))) .

This gives the condition

∆φ = arccos(
Φ

2 + Φ
) = 2k(π/2− arcsin(

√
A/(1 +A))) (4.53)

A =
ω2

0

v2
0k

2
. (4.54)

This condition relates the parameters ω0/v0 and k:
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k =
arccos( Φ

2+Φ )

2(π/2− arcsin(
√
A/(1 +A))

. (4.55)

(4.56)

The above conditions only fix the geodesic line representing the edge of the icosahedron. Besides
the condition fixing ∆φ, one must apply the condition s = k, where s is the geodesic length of the
edge. Since the scaling up of grr increases also the distance between the vertices of the icosahedron,
it is not completely clear whether any solution exists unless one gives up that assumption that
k(r) is constant.

One can however argue that since the variation of r for the surface edge is much shorter than
for radial edge, the length of radial edge increases faster with k as that of the surface edge so that
there are hopes that the lengths of the edges can be equal.

4.5.2 Explicit form for the condition s = k

Also the integral involved with the condition s = k can be solved explicitly so that it is rather
trivial exercise in numerics to find whether the solution to the condition k = s exists.

1. The expression for the length of the surface edge is given by

s =
∫ √

k2 + (dφdr )2dr .

By substituting dφ/dr one obtains

s = 2k
√
AJ(A, umax) ,

J(A, umax) =
∫ umax

1
1√

1+A(1−u2)

du
u2 ,

A = K2

v20
, umax =

√
A+1
A =

√
1 +

k2v20
ω2

0
.

Edge length s is proportional to the radial edge length k and depends also on parameter A,
which in turn turn depends on k both explicitly and implicitly.

The first thing to notice is that if A or equivalently umax does not depend on k, both s
and radial edge length are proportional to k so that their ratio does not change. Hence A
must depend on k both explicitly and implicitly. The constraint of Eq. 4 for ∆φ and the
non-trivial explicit dependence of A = x2/k2 on k together imply that also the parameter
x = ω0/v0 = k

√
A must depend on k.

2. The integral J(A, umax) can be expressed in terms of elementary function by the same variable
change as performed for I(A, umax. One obtains

J(A, umax) =
√
A

(1+A)

∫ 1√
A/(1+A)

1√
1−v2

dv
v2

= −
√
A

(1+A)cot(arcsin(
√
A/(1 +A))) = 1

1+A .

This transforms the condition s/k = 1 to the form

s
k = 2

√
A

(1+A) = 1 ,

A = K2

v20
=

ω2
0

k2v20
.

(4.57)
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The condition s/k = 1 gives

A = 1 . (4.58)

Combibing this with Eq. 5 for k, one obtains

A = 1 ,

k =
arccos( Φ

2+Φ )

2(π/2− arcsin(
√
A/(1 +A)))

=∞ ,

r =
ω0

v0
= k

√
A =∞ .

(4.59)

The conclusion is that for a finite value of k it is not possible to satisfy the condition s/k = 1. The
interpretation is that the length of radial edge does not increase fast enough to reach the length
of the surface edge since it becomes also longer.
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